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Abstract 

Modeling is an effective tool for studying the behaviour of a system. When modeling, the 

system’s descriptions are usually abstracted into simpler models. These models can then 

be analyzed and solved (manually or automatically) by using different mathematical 

techniques. However, sometimes the models become too complex to analyze formally. In 

those cases, computer Modeling and Simulation (M&S) can help designers to understand 

the behaviour of these systems better. One example of such complex systems are Real-

Time (RT) systems, which are usually composed of a digital computer executing 

software that interacts with the external physical environment with tight timing 

constraints.  

In studying these systems, M&S has proven to be an essential tool. However, when 

simulating RT models, the required interactions could quickly grow beyond the ability of 

human observation and analysis. Instead, formal methods for verifying these systems can 

guarantee the correct and timely function of these systems. 

Due to the benefits of formal verification of RT simulation models, this thesis 

introduces a methodology to enable performing formal verification of simulation models 

based on the Discrete Event System Specification (DEVS) formalism. The thesis 

introduces a road map for a complete methodology to formally verify DEVS models, thus 

enabling better methods for M&S validation and verification and making M&S a better 

tool for RT-embedded systems development.  
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Chapter 1: Introduction  

Real-Time (RT) systems are advanced computer systems with hardware and software 

components with timing constraints. In some cases, they have “soft” timing constraints in 

which a deadline can be missed without serious consequences. In other cases, the system 

must satisfy "hard" timing constraints, and a missed deadline can result in catastrophic 

consequences. In these highly reactive systems, not only is correctness critical, but also 

the timeliness of the executing tasks. Embedded RT software systems are increasingly 

used in mission critical applications, where a failure of the system to deliver its function 

can be catastrophic. For instance, if we consider the design decisions made for an aircraft 

autopilot, or a controller for an automated factory, we need to obtain system responses 

within well-defined deadlines. Great care must be taken when developing RT systems to 

guarantee functional correctness along with non-functional correctness such as timing 

constraints. 

Because of the growing complexity of RT systems and their need for high reliability, 

RT software development is still time-consuming, error-prone, and expensive, requiring a 

difficult and costly development effort with no guarantee for a bug-free software product. 

Many techniques have been proposed and used in practice to check correctness of RT 

software. Current RT engineering methodologies use modeling as a method to study and 

evaluate different system designs before building the real application. In this way, real 
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systems would have a very high predictability and reliability. In order to apply this 

methodology, a designer must abstract the physical system at hand and build a model for 

it, then combine this with a model of the proposed controller design. Then, different 

techniques can be used to reason about these models and gain confidence in their 

correctness. Informal methods usually rely on extensive testing of the systems based on 

system specifications [1]. These methods have limitations because, in order to guarantee 

software reliability, we need to apply exhaustive testing to the software component, using 

all possible input combinations, which is a costly process. Many techniques have been 

proposed to enable a practical alternative to this exhaustive software testing [2]. 

However, we cannot guarantee a full coverage of all possible execution paths in a 

software component, thus leaving us with limited confidence in software correctness. 

Therefore, informal techniques can reveal errors, but they cannot prove the non-existence 

of errors. 

The use of formal software analysis is growing as an alternative, as this technique 

allows full verification that software components are free of errors. In the last few 

decades, these techniques have matured and been used in some industrial capacity for 

software and hardware correctness verification [3]. Formal techniques can be used to 

prove the correctness of systems specifications. Nevertheless, they are usually 

constrained in their application, as they do not scale up well. Likewise, the designers 

need a high level of expertise to apply these techniques. Another drawback of formal 

techniques is their need to be applied to an abstract model of the real system, which 
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means that what is being verified is not the final implementation. Even if the abstract 

designed model is proven correct, there is a risk that some errors creep in during the 

development process through the manual implementation of the design into executable 

code [1]. 

Formal verification techniques are of two main types, deductive or algorithmic [4]. 

Deductive techniques rely on representing the system and its specification with logic 

rules, and then trying to deduct a proof of system correctness. In this method, the user 

needs to find a sequence of deductions to reach the proof; hence, deductive technique 

needs more creativity and expertise with formal methods from the user than algorithmic 

one. This becomes a disadvantage with the growing size of systems, as manual 

intervention, required from the user, also grows. The advantage of this technique, 

however, is that it can deal with systems of infinite state space, which usually is the case 

found in hybrid systems. Algorithmic techniques rely on modelling the system in a 

graphical form, and coding the specifications in logical queries. Then an algorithm for 

reachability analysis searches the graph space for nodes that satisfy specification queries 

and are reachable from the initial system configuration. This method is also called model 

checking. For a system composed of multiple components, the model checking algorithm 

combines these models to build one graph representing the system overall behaviour that 

is called a reachability graph. By traversing this graph, the model checking algorithm can 

check the satisfaction of a given query against the given system model. However, for the 

algorithm to terminate, the reachability graph must be finite, otherwise termination would 
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not be guaranteed, and the model checking problem would be undecidable. The 

advantage of this method is its complete automation, and the user does not need to be an 

expert in formal methods. New theoretical advances in model checking allow engineers 

to guarantee certain properties about the models of such systems using a formal approach. 

Model checking techniques can be automated to improve the work of the software 

engineer. Timed Automata (TA) theory [5], in particular, has provided many practical 

results in this area. However, there is still a gap between a system model that is checked 

as an abstract entity, and the actual system implementation code to be run on a target 

platform. More work is still needed to prevent errors from creeping into the final 

implementation as the programmer translates the requirements captured and modeled in 

TA into code. TA and other formal methods have showed promising results, but they are 

still difficult to apply and have limited power when the complexity of the system under 

development scales up. 

A different approach to deal with these issues considers using Modeling and 

Simulation (M&S) to gain confidence in the model correctness. The use of M&S is not 

new, and systems engineers have often relied on these methods in order to improve the 

study of experimental conditions during model definition. The construction of system 

models and their analysis through simulation reduces both end costs and risks, while 

enhancing system capabilities and improving the quality of the final products. M&S let 

users experiment with “virtual” systems, allowing them to explore changes and test 

dynamic conditions in a risk-free environment. This is a useful approach, especially 
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considering that testing under actual operating conditions may be impractical and, in 

some cases, impossible. Nevertheless, no practical, automated approach exists to perform 

the transition between the modeling and the development phases, and this often results in 

initial models being abandoned, resulting in increased initial costs that project managers 

try to avoid. Simultaneously, M&S frameworks are not as robust as their formal 

counterparts. 

Using M&S for RT systems enables testing real life scenarios, even for those cases in 

which real-life testing might be too costly or impossible to achieve [6]. If the models used 

for M&S were formal, their correctness would also be verifiable, and a designer could see 

the system evolution and its inner workings even before starting a simulation. Another 

advantage of executable models is that they can be deployed to the target platform, thus 

giving the opportunity to use the model not only for simulations, but also as the actual 

implementation deployed on the target hardware. This avoids any new errors that could 

appear during the implementation from transformation of the verified models into an 

implementation, thus guaranteeing a high degree of correctness and reliability. 

1.1 Objectives  

Considering the issues in the previous section, RT system designers need a methodology 

to help them in the modeling and analysis of any complete design of an RT system. It is 

useful if the same methodology can be used to formally verify a system against its 

requirements, and also used to simulate individual scenarios. Finally, after complete 
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verification of the correctness of the designed system, the methodology should ensure 

that the exact verified design could be deployed and executed on the target platform. 

The objective of this thesis is to provide such a practical methodology to build and 

verify RT systems. This methodology uses two main formalisms to model systems 

specifications. The first one of them is the Discrete Event System Specifications (DEVS) 

formalism [7], which is based on systems theory. DEVS is the most general discrete 

event specification, and one can build complex models as a composite of different 

methods for the various components (Cellular Automata, Petri Nets, Timed Finite State 

Machines, Modelica, PDEs and other continuous components) that can be then translated 

into a DEVS representation. These DEVS models can then be simulated using DEVS 

abstract simulation algorithms. DEVS simplifies building complex models by its 

hierarchical building of coupled models out of atomic models. DEVS models are directly 

executable on many DEVS simulators including an RT DEVS kernel such as e-CD++ 

[8]. However, DEVS simulators lack formal verification capability and this was the 

motivation to this thesis. 

The second formalism used in our methodology is Timed Automata (TA) [5]. The TA 

formalism, which is based on finite automata theory, was proposed to specify RT reactive 

systems. TA provides a solid theory and algorithms for model checking, and many 

existing tools implement these algorithms (for instance, UPPAAL, Kronos and others [9], 

[10]). TA’s main concern is building an abstract formal description of the system that is 

verifiable by model checking, and is not focused on simulating discrete systems; thus, its 
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tools lack many functions that usually exist in DEVS simulators and allow simulating 

different systems. 

Given the strengths and weaknesses of these two formalisms, the objective of this 

thesis is to develop a methodology that combines both formalisms to allow the designer 

to model, simulate, verify, and deploy RT systems. This is achieved by guaranteeing the 

correctness of the model with a methodology that verifies DEVS models with TA model-

checking techniques and tools. The verified DEVS models would then execute directly 

on an RT DEVS kernel, thus eliminating the risk of introducing errors in the final system 

implementation on the target platform. This methodology gives a model-based approach 

in which the user can move the original verified models to a target platform to execute 

them in RT without any changes. The resulting systems developed with this methodology 

would have a higher correctness and reliability of the actual code executing in the RT 

system. During this research this concept is demonstrated in actual elevator controllers 

running in real-time scenarios. 

1.2 Originality of the Research  

The originality of this research relies in the introduction of a new practical methodology 

to verify DEVS models. The methodology introduced here differs from other existing 

approaches in that it targets the verification of classic DEVS models and not a subset of 

DEVS formalism. This allows the modeller to use the classic full DEVS formalism and 

makes this methodology a good option to be used in an embedded systems development 

lifecycle methodology.  
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The verification of DEVS introduced in this thesis is done on multiple stages. First, it 

defines a new class of DEVS, called RTA-DEVS, which is close to classic DEVS in 

semantics and expressive power. Then, the methodology defines a transformation to 

obtain a TA that is behaviourally equivalent to RTA-DEVS. The advantage of doing so is 

that many classic DEVS models would satisfy the semantics of RTA-DEVS models. 

Thus, they could be simulated with any DEVS simulator. Likewise, it could be 

transformed to TA to validate the desired properties formally. RTA-DEVS is close to 

general DEVS, in its expressiveness; nevertheless, as we will show later in the 

methodology, it is a verifiable subset of DEVS. 

The second stage in the verification deals with the approximations and abstractions 

carried out for transforming DEVS models into RTA-DEVS. To assess their effect on 

verification accuracy, we propose a method to estimate if any errors were introduced 

during the transformation that may affect the verification step, or the validity of the 

resulting RTA-DEVS model. 

A new approach is also introduced to build on the above results to enable the formal 

verification of hybrid systems (composed of discrete and continuous components) built 

with DEVS formalism. All of these research topics are original research ideas that have 

not been found in the literature of this domain.  

1.3 Structure of the Thesis 

This thesis is structured as follows: Chapter 2 provides the reader with a review of the 

state of the art of literature related to the research. In this chapter, we also introduce the 
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main concepts used, including an introduction to the DEVS formalism, related work of 

different approaches used to verify DEVS models, an introduction to Timed Safety 

Automata, and to the QSS method, which will be used to model continuous systems with 

discrete DEVS models. We also introduce a summary of this thesis contribution in this 

chapter. 

Chapter 3 presents the proposed RTA-DEVS formalism, and it shows how it is 

mapped to TA for the purpose of formal verification. An example is introduced to show 

the proposed methodology and algorithm. We also describe a method to transform DEVS 

models to RTA-DEVS with the ability to tell if this transformation would cause an effect 

to verification results.   

Chapter 4 discusses the work to verify hybrid systems built with Quantized State 

Systems method QSS and DEVS components. 

In chapter 5, we present the conclusion for this research, and potential future research. 
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Chapter 2: Survey of State of the Art  

 

In this chapter, we will introduce a brief state of the art related to our thesis research. 

This includes a brief introduction to DEVS formalism, coverage of different techniques 

that have been used in literature for verification and testing of DEVS models, a brief 

introduction to timed automata theory and formalism, and an introduction to a topic of 

interest to our methodology that is modeling hybrid systems with a discrete event 

representation using DEVS components.  

These topics would constitute an essential background to understand our 

methodology and to introduce our thesis in the following chapters. 

2.1  Discrete Event System Specification (DEVS). 

      [7] is an accepted framework for understanding and supporting the activities of 

modeling and simulation. DEVS is a sound formal framework based on systems theory. It 

includes well-defined coupling of components, hierarchical, modular construction, 

support for discrete event approximation of continuous systems, support for stochastic 

systems, and enables component reuse. DEVS theory provides a rigorous methodology 

for representing models, and it does present an abstract way of thinking about the world 

independent of simulation mechanisms, underlying hardware and middleware. A real 

system modeled with DEVS is described as a composite of sub-models, each of them 

being atomic (behavioural) or coupled (structural).  



     

    11 

 

The basic modelling unit of DEVS is called an atomic model. A DEVS atomic 

component is formally defined as: 

AM = < X, S, Y, δext, δint, λ, ta >           (Eq. 2.1) 

Where: 

X: a set of external input event types   

S: a sequential state set 

Y: an output set 

δext: Q × X → S, an external transition function 

Where Q is the total state set of M = {(s, e) | s  S and 0 ≤ e ≤ ta(s)} 

δint: S → S, an internal transition function 

λ: S → Y , an output function 

ta: S → 
+
0,∞, a time advance function 

Where the +
0,∞ is the non-negative real numbers with ∞ adjoined. 

An atomic component AM is a model that is affected by external input events X, and 

it generates output events Y. The state set S represents the unique description of the states 

of the model. The internal transition function δint and the external transition function δext 

compute the next state of the model. If an external event arrives at elapsed time e which 

is less than or equal to a value specified by the time advance function ta(s), a new state s′ 

is computed by the external transition function δext. Then, a new ta(s′) is computed, and 

the elapsed time e is set to zero. Otherwise, if no external event arrives before the state 

lifetime elapses, a new state s′ is computed by the internal transition function δint. In the 
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case of an internal event, the output specified by the output function λ is produced based 

on the state s. As before, a new ta(s′) is computed, and the elapsed time e is set to zero.  

Figure 1 illustrates the state transition of an atomic component. This diagram 

describes the behaviour of an atomic model as sequence of steps indicated by the 

numbers on the diagram.  In the first step (1) on the diagram, the atomic component is in 

state s for a specified time ta(s). If the atomic component passes this time without 

interruption, it will execute its output function λ(s) (step 2) to produce an output y (step 3) 

at the end of this time and will change state based on its δint function (complete transition) 

to state s` in step 4, and then this new state becomes the component state and we consider 

it as state s which now is the component state (this is indicated by the dotted arrow from 

s` to s on the bottom of the diagram) . Continuing from this new state s,   if the 

component receives an input x (step 5) during the state s time life ta(s) it will change its 

state which is determined by its δext function (step 6) and does not produce an output 

(incomplete transition). Again we consider this new state the component state s (this is 

indicated by the dotted arrow from s` to s on the left of the diagram) and the component 

waits in this state for the next event to repeat the previous cycle. 



     

    13 

 

Figure 1: DEVS atomic component state transition sequence (extracted, with 

 permission,  from [7]).   

 

A coupled model connects the basic models together in order to form a new model. 

This model can itself be employed as a component in a larger coupled model, thereby 

allowing the hierarchical construction of complex models. The coupled model is defined 

as: 

N = <X, Y, D, {Md | dD}, EIC, EOC, IC, SELECT >       (Eq. 2.2) 

Where: 

X = {(p, v) | p  IPorts, v  Xp} is the set of input ports and input values for these ports; 

Y = {(p, v) | p  OPorts, v  Yp} is the set of output ports and output values for these 

ports; 

D is the set of the component names. 

 Each component d is a DEVS model, we express each component as d  D with 

its DEVS atomic model defined as: 
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Md = (Xd, Yd, S, δint, δext, λ, ta) 

Where Xd  = {(p,v) | p  IPortsd , v  XP }, 

 Yd  = {(p,v) | p  OPortsd , v  YP } 

      The component couplings are subject to the following requirements: 

External input coupling (EIC) connects external inputs of the coupled model to 

component inputs,  

EIC  {((N, ipN), (d, ipd)) | ipN  IPorts, dD, ipdIPortsd}; 

External output coupling (EOC) connects component outputs to external outputs, 

EOC  {((d, opd), (N, opN)) | opN OPorts, dD, opdOPortsd}; 

Internal coupling (IC) connects component outputs to component inputs,  

IC {((a, opa), (b, ipb)) | a, bD,opaOPortsa, ipbIPortsb}; 

SELECT: 2M → M, the tie-breaking selector 

A coupled DEVS model is defined with the restriction that no feedback loop is 

allowed, i.e. no output port of a component should be connected to one of its input ports. 

A coupled model N consists of components Mi which are atomic components and/or 

coupled models. The influences Ii and the i-to-j output translation Zi,j define three types of 

coupling specifications as follows. The external input coupling EIC connects the input 

events of the coupled model itself to one or more of the input events of its components. 

The external output coupling EOC connects the output events of the components to the 

output events of the coupled model itself. The internal coupling IC connects the output 

events of the components to the input events of other components. In these definitions, Ii 



     

    15 

represents set of components that are connected to the input, while Zi,j represents any 

connections from an output of a component to the input of another component.  The 

SELECT function is used to order the processing of the simultaneous events for 

sequential events. Thus, all the events with the same time in the system can be ordered 

with this function.  

Figure 2 shows a hierarchical DEVS model. This model is composed of two atomic 

components (Generator, Buffer and Processor) and two coupled models: the top model 

contains the generator atomic component and the BUF-PROC coupled model, the BUF-

PROC coupled model includes two atomic components: BUF and PROC. The port 

connections are also visible in the figure. For example the output port “out” of atomic 

component PROC is connected to the “done” input port of the BUF atomic component 

within the same coupled model and is also connected to the output port of its parent 

coupled model which connects this output to the Top model output port.  

 

Figure 2: DEVS Model Hierarchy. 

DEVS models are executed inside a DEVS simulator or executer. This simulator 

loads the DEVS model, reads any external event that may exist, and executes the 

transition functions defined in the DEVS model. Any output generated from the DEVS 
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model is produced to the environment from the DEVS simulator. Some examples of 

DEVS simulators are CD++ [11], PowerDEVS [12], adevs [13] and DEVSJAVA [14]. 

DEVS simulators are also available to run on embedded platforms allowing DEVS 

models to run as embedded software in RT. Some initial work on executing DEVS 

models in real time was done in [15] to execute DEVS models on a chip. More advanced 

simulators were developed, for example PowerDEVS [16]. PowerDEVS has the ability to 

execute models on a RT operating system with synchronization of simulation time to RT 

clock. With its ability to model continuous systems within DEVS, the RT execution of 

DEVS allows simulation of physical systems in RT.  

RTDEVS/CORBA [17] is a RT simulator designed to model and simulate large-scale 

distributed RT systems. This simulator supports the concept of model continuity that 

means the same model of a system can be used through all design phases. This simulator 

provides RT modeling & simulation environment so that the system under study can be 

simulated with its environment model in real-time. Zeigler in [7] describes the internal 

architecture of such RT simulator and some differences of RT simulator from the classic 

DEVS simulator to increase performance and enable interaction with underlying 

operating system to support concurrent execution threads. 

E-CD++ [8] is an embedded DEVS simulator that can execute DEVS models in RT 

and interacts with external sensor and actuators as shown in a case study in [18]. Using 

DEVS models as executable models on an embedded platform closes the gap between 

modeling and implementation, thus avoiding errors that may be introduced by the manual 
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translation of models into executable code. This approach can be greatly enhanced with 

the ability to validate DEVS models not only through simulation, but also with the ability 

to formally verify the model against the initial requirements. In this case, DEVS models 

would be proven free of defects, and its direct execution on embedded platform 

eliminates any possible creep of defects into the executed code. The goal of this thesis 

therefore, is to present a robust methodology to formally verify DEVS models using 

different formal techniques and methods, and giving the system modeller a robust method 

to estimate the effect of any approximations necessary to achieve that goal.  

2.2  Timed Automata (TA) 

A Timed Automaton can be defined as in [10]:  

A  = (N, lo, E, I)     (Eq. 2.3) 

– N    is a finite set of locations (or nodes), 

– lo  N is the initial location,  

– E  N (C)     2C   N  is the set of edges and  

–  I: N→β(C)  assigns invariants to locations 

Here, C is a set of clock variables (with x, y,... representing clock variables from the set 

C).  We use a, b, etc. to represent the actions from a set of the finite alphabet Σ. Let us 

assume a finite set of real-valued variables C ranged over by clocks x, y,... and a finite 

alphabet Σ (with actions a,b,...). Let us call a clock constraint to a conjunctive formula of 

atomic constraints of the form x~n or x-y ~ n where x,y are clock variables, ~ is one of {≤, 

<, =, >, ≥} and n is a natural number. The clock constraints can be used on transitions, 
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where they are called guards; or in a location (state), where they are called invariants. 

Invariants are constraints on the form x ≤ n, or x< n to restrict time spent in a TA 

location. β(C) denotes set of clock constraints. We use the notation u ┤I(l) to mean that 

clock valuation u satisfies the invariant defined in location l. We also define a TA state as 

a pair of (location, clock valuation) such as (L,u). 

TA are Timed Transition Specifications in which the states are pairs <L,u>, where L is 

a location, and u is a clock valuation. We write ll rag  
,, when (l,g,a,r,l)  E with g a 

clock constraint, a an action, and r a set of clocks to be reset to zero.  

TA uses two types of transitions:  

- Delay Transitions:  duLuL d ,, , where the time passage d causes a 

transition from a start location L to an end location L if u ┤I(L) and (u+d) ┤ I(L). 

- Action transitions:  uLauL ,, , where an action a causes a transition from 

a start location L, to an end location L’, and u  ┤ I(L). 
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Figure 3: Timed Automaton  

An example of a timed automaton is shown in figure 3. This model represents a light 

that can be either off, operating in red mode, or in white mode. The light changes modes 

depending on the user pressing the light switch button. From the red mode if the switch is 

pressed twice within 5 seconds, the light goes to white then to off, otherwise it goes to 

white then back to red. In order to do that, the TA uses three states. LightOff is the initial 

state, which represents that the light is turned off. The transition out of WhiteLight to 

LightOff has the a guard x ≤ 5 which enables the transition only while clock x value stays 

less than 5 time units, whenever a synchronization signal arrives on channel press. States 

could also have clock constraints and in this case, they are called invariants. In this case, 

time is allowed to pass in a state while the clock values satisfy the invariant. Once the 

invariant is not satisfied, the automaton would leave that state and enable a transition to 

another state, in which current clock values would satisfy that state invariant. TA is 

suitable for modeling discrete systems with continuous time. These systems could be 
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composed of a single TA model, or multiple models that interact together. The latter case 

is called a network of TA.  

2.2.1 TA and Model Checking 

One of the most successful techniques for systems formal verification is model checking 

[19]. In this method, the system to be verified is modeled by a suitable formalism such as 

I/O automata or TA, which can be represented in a graphical notation. Each state of the 

model assumes some valid system property(ies) at this state.  

System requirements are specified as a temporal logic formula called query. The 

model checking technique then uses an algorithmic approach to traverse the model 

graph, and it checks the satisfaction of the query against the properties defined at each 

state. For a system composed of multiple components, the model checking algorithm 

combines these models to build one graph representing the system overall behaviour that 

is called a reachability graph. By traversing this graph, the model checking algorithm can 

check the satisfaction of a given query against the given system model. However, for the 

algorithm to terminate, the reachability graph must be finite, otherwise termination would 

not be guaranteed, and the model checking problem would be undecidable. With timed 

formalisms such as TA, the time elapse is modeled by a continuous clock variable. This 

variable value increases when TA is waiting in a state. Even for a bounded Real interval, 

the number of Real values would be infinite as shown by the famous Cantor’s diagonal 

method. However, TA model checking for finite state machines [20][21][22] was enabled 

by extending symbolic model checking techniques [23][24] to build a finite reachability 
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graph with continuous time. Nevertheless , the state explosion problem still limits the size 

of actual problems that can be solved. The state explosion problem is a term describing 

the exponential growth of the reachability graph size with the growing number of 

components and states of each component in a network of TA. This renders the 

techniques of model checking practically limited to small and medium industrial 

problems unless combined with other techniques to overcome this exponential growth of 

the reachability graph.  

 Recent techniques to reduce this problem have been proposed and these results were 

implemented in a number of tools for TA model checking with a success to check models 

of increasing sizes. One of these tools is UPPAAL [9][10] that have extended TA with 

integer variables, urgent channels and user-defined functions. These extensions increase 

the conciseness of the model, but not the expressiveness power as shown in [25]. 

UPPAAL uses a subset of TCTL (Timed Computation Tree Logic) [24] to specify 

queries for properties in the TA model. 

Timed safety Automata is the version of TA used in the UPPAAL model checker 

[10]. This thesis used this class of TA as it suffices for the verification purpose to 

represent DEVS models and it is verifiable within UPPAAL tool.  

In the methodology introduced in this thesis, if UPPAAL (or any other model checker) 

faces a problem of state explosion, and no answers can be obtained in finite time, the user 

can use model checking on a rough abstract of the system. From this step, some 

requirements may not be satisfied in the rough abstract model. These would generate a 
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trace that can be used as a seed input to a simulated mode to test the models using DEVS 

simulation. Subcomponents can be verified using TA model checkers, improving the 

overall quality of the system. 

2.3  Related work on DEVS verification techniques. 

There have been several proposals to verify DEVS models, ranging from formal model-

checking of restricted classes of DEVS, the generation of traces from DEVS models for 

testing, the specification of high-level system requirements in TA (and verifying DEVS 

model against those requirements), or introducing clock constructs to DEVS to conform 

with TA. In this section, we give an overview of these techniques and compare different 

approaches. From this comparison, we show how the methodology introduced in chapter 

3 closes an existing gap in current techniques. 

In [26], Wainer et al. presented the verification of DEVS models, checking the 

consistency of model structure, the correct coupling of components, and the correct 

definition of the transition functions. These checks were done statically before executing 

the models and introduced a component to monitor execution for some verification. 

However, this approach has a limited ability, as it needs to simulate all possible 

executions of a model to verify all interactions with the model. 

In [27], Hernandez and Giambiasi showed that verification of general DEVS models 

through reachability analysis is undecidable. They based their deduction on building a 

DEVS model that simulates a Turing machine. Since the halting problem for Turing 

machines is undecidable (i.e. with only static analysis, we cannot know if a Turing 
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machine would be in a halting state after execution), Hernandez and Giambiasi concluded 

that this is also true for DEVS models. Therefore, if we start from an initial state in the 

DEVS model, we cannot know if we would reach a particular state, and hence 

reachability analysis for general DEVS is impossible. However, reachability analysis 

would be possible only for restricted classes of DEVS with finite state space, as the 

undecidability result was obtained by introducing state variables into DEVS formalism 

with infinite number of values.  

Because of the above undecidability result, many approaches have created restricted 

DEVS subclasses that are verifiable, and in some cases extend original DEVS definition 

with specific properties for RT systems.   

One of these approaches is the Real-Time DEVS formalism (RT-DEVS) [28] that 

extends classic DEVS definition by introducing a time advance function that maps each 

state to a time-range with maximum and minimum time values. In [29], RT-DEVS was 

used to model a RT system of train-gate-controller. Song and Kim introduced an 

algorithm to build a timed reachability tree to check model safety analysis. This work 

however did not focus on restricting infinite state-space of DEVS for reachability 

analysis decidability, and it assumed practical RT-DEVS models simulated with modern 

computers to be an approximation of general DEVS that enables decidable reachability 

analysis. 

In another approach, Hwang defined a subclass of DEVS to enable verification 

analysis of its models. This was called Schedule-Preserving DEVS (SP-DEVS) 
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[30][31][32][33]. SP-DEVS puts the following restrictions on DEVS to obtain finite 

reachability graph and thus a decidable reachability analysis: 

 The sets of states, input, and output events are finite. 

 The lifespan of a state can only be a rational number or an infinite time value. 

 Preserving the internal transition function schedule after taking any external 

transition, i.e. if a state transition is caused by an input event, the lifespan and 

elapsed time are preserved after moving to the new state [33].  

These restrictions limited the expressiveness of SP-DEVS to be less than that of 

classic DEVS; in particular, the last restriction above. Moreover, this restriction caused a 

problem known as OPNA (Once an SP-DEVS model becomes Passive, it Never returns 

to become Active), as shown in [30]. This problem results from the restriction of 

preserving the schedule of the internal transition. Hence, if that schedule was infinity, any 

subsequent external event will not be able to change it; thus, any passive state can never 

be interrupted (by the means of assigning a finite time advance value to it). 

To solve these issues with SP-DEVS, another sub-class of DEVS was introduced, 

called Finite-Deterministic DEVS (FD-DEVS) [34]. In this work, Hwang mapped the 

time advance function states only to rational numbers, and prohibited the external 

transition function to use the elapsed time to compute its result. It also removed the 

previous restriction of SP-DEVS of preserving the internal schedule, thus avoiding the 

OPNA problem. With the other restrictions, reachability analysis of FD-DEVS became 

decidable. Hwang in [34] also introduced an algorithm for verification through 
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reachability analysis similar to the algorithms and techniques used for TA. However, the 

restrictions introduced in FD-DEVS for the definition of its external function restricted 

the expressiveness of FD-DEVS to be much less than classic DEVS. The reachability 

analysis algorithm introduced for FD-DEVS uses similar techniques as TA, while Hwang 

and Zeigler in [34] have not claimed an advantage over TA reachability algorithms and 

tools in time and space complexity. Thus, this approach lacks the support of robust TA 

model checking tools like UPPAAL or KRONOS, without gaining a tangible advantage. 

Another approach for verifying another class of DEVS which is RT-DEVS, is done 

using TA and UPPAAL. Using this approach, Furfaro and Nigro[35][36] and Cicirelli 

and Furfaro [37] introduced a transformation from RT-DEVS to UPPAAL. This 

transformation allows Weak synchronization between components of TA model as RT-

DEVS semantics uses Weak synchronization. Once the transformation is done, one 

obtains a TA model that can be verified with available tools for TA model checking. 

However, the transformation given did not formally show an equivalence of timed 

behaviour between RT-DEVS and TA models, and did not introduce a mechanism to 

approximate irrational values that may be defined in RT-DEVS models, or how to 

evaluate the impact of such approximation on verification results. 

The work presented in [38] by Han and Huang used a different approach to 

verification of classic parallel DEVS models, based on a method to map DEVS models to 

TA. However, this was different from the previous approaches, as in this approach, the 

conversion method mapped both DEVS model and also a representation of the DEVS 
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simulator to TA. The approach suggests trace equivalence as the basis for parallel DEVS 

and TA model equivalence. This approach considers not only the DEVS model, but also 

the execution engine semantics and structure to be part of the transformation to TA. As 

Zeigler et al. shown in [7], in a DEVS simulator, every atomic component has a 

coordinator component responsible for routing messages from and into the atomic 

component. Hence, in the verification approach of [38], each atomic model translated to a 

TA would also need a model of its coordinator translated to TA. Thus, a coupled model 

composed of n atomic DEVS components translated to TA by this approach would also 

need at least n+1 local coordinators interacting with the global coordinator of the 

simulator. As each introduced coordinator contains few states and transitions to model its 

behaviour, the introduction of these n+1 coordinators increases the total number of states 

in the resultant TA model exponentially, and this adds to the state-space explosion 

problem. This would limit the practical size of any problem that can be verified by this 

approach. Another drawback is the notion of trace equivalence between Timed Transition 

Systems (TTS) as shown by Aceto et al. in [39] . This equivalence is less suitable for 

reactive systems as it may not reveal subtle errors in the models that would not be 

observed externally. This was shown in [39] by Aceto et al., as well it was shown that 

only bi-simulation equivalence can reveal such errors. Also Timed Computational Tree 

Logic TCTL, which is used to model queries in timed model checking tools such as 

UPPAAL and Kronos, is not preserved by trace equivalence. This means TCTL queries 

that are satisfied on TA model may not be satisfied on the original DEVS model.  



     

    27 

Dacharry and Giambiasi [40] introduced a similar approach based on TA to verify 

subclasses of DEVS formalism. They introduced a new class of DEVS called Time 

Constrained DEVS (TC-DEVS), which expanded the DEVS atomic model definition 

with multiple clocks incremented independently. Classic DEVS atomic models can be 

seen as having only one clock that keeps track of elapsed time in a state, and is reset on 

each transition. TC-DEVS also added clock constraints similar to TA (functioning as 

guards on external and internal transitions). However, it expands on TA guards by 

allowing clock constraints as state invariants to contain clock differences. TC-DEVS is 

then transformed to an UPPAAL TA model. However, there is no restriction on the 

constant values defined in TC-DEVS to be rational numbers. Hence, the resulting TA 

model from transformation of general TC-DEVS formalism may have undecidable 

reachability. 

Other than proposing verifiable subclasses of DEVS, some other approaches used TA 

to model high-level system requirements while using the DEVS formalism to model 

lower-level system design. Then these approaches would build a refinement relation 

between a DEVS model and a TA model. This approach was followed by Giambiasi et al. 

in [41]. System requirements are then verified through the simulation of the DEVS 

model. This approach differs from others in that it does not use formal methods to verify 

DEVS or TA models, but relies on exhaustive testing through simulation of scenarios. 

The problem with this is that it is very difficult to cover all scenarios for a system, and it 

is a resource-intensive exercise to cover even a portion of these scenarios. 
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Other approaches use semi-formal DEVS verification techniques. Hong and Kim [42] 

and Labiche and Wainer [43] proposed to analyze the DEVS model formally, and then to 

generate test scenarios that can be used to verify the DEVS models. These testing 

scenarios or sequences are generated from model specifications and then applied against 

the model implementation to verify the conformance of implementation to specifications. 

A summary of these approaches along with this thesis approach is shown in table 1.  

Table 1: Related Work of DEVS Verification and Contribution 

Verification 

Method 

Modelling 

Formalism 

Ability to Verify  

 

Coverage of 

classic DEVS 

Verification 

Coverage of 

Hybrid 

DEVS 

Models 

Verification 

Disadvantages 

Safety Bounded 

Liveness 

Deadlock 

Freedom 

Static checks 

and runtime 

monitoring 

[17] 

DEVS NO (No 

exhaustive 

checking) 

NO (No 

exhaustive 

checking) 

No No No Runtime 

monitoring 

cannot 

exhaustively 

check all 

scenarios. 

Reachability 

tree 

construction 

RT-DEVS Yes Yes Yes No treatment 

of irrational 

values. 

No No Tool support 

Reachability 

tree 

construction 

SP-DEVS Yes Yes yes No No No Tool Support 

Reachability 

tree 

construction 

Finite-

Deterministic 

DEVS (FD-

DEVS) 

Yes Yes yes No No lacks the support 

of robust TA 

model checking 

tools like 
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UPPAAL or 

KRONOS 

UPPAAL TA RT-DEVS Yes Yes yes No treatment 

of irrational 

values. 

No No Proof of 

behavioral 

equivalence.  

TA classic parallel 

DEVS [46] 

Yes Yes yes No treatment 

of irrational 

values. 

No Used trace 

equivalence 

notion which is 

weaker than 

bisimulation 

equivalence. 

Modeled 

execution engine 

along with the 

system model 

which increases 

state-space 

growth and 

verification 

complexity. 

UPPAAL TA Time 

Constrained 

DEVS (TC-

DEVS)[49] 

Yes Yes yes No No No 

transformation 

from DEVS to 

TC-DEVS.  

Test cases 

generation 

DEVS[50] Yes 

(partially), 

as it is very 

costly 

No No No No Cannot work on 

abstracted DEVS 

model to reduce 

the problem size. 

UPPAAL TA RTA-DEVS 

(This thesis) 

Yes Yes Yes Yes Yes  
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The techniques we showed so far concern the verification of hard real-time systems. 

In these systems, we cannot tolerate any response missing its deadline. However many 

real-time systems can tolerate some occasional missing of deadlines, and in this case, the 

system can still perform its function with some degraded performance. These system are 

called soft real-time. In these systems, a verification question would be “with probability 

0.99 or better, the system would respond within 10 time units”. Answering this question 

requires modeling the system in a formalism that allows probabilistic behaviour such as 

stochastic DEVS [44] and Probabilistic Timed Automata [45]. 

  

2.4 Hybrid DEVS models 

Hybrid models are particularly important in modeling digital control systems where the 

controlled environment obeys the laws of physics, while the controller can be a digital 

discrete system or a combination of both digital and analog. The study of such systems 

requires the verification of the resulting hybrid system.  

A major problem in verification of hybrid systems is the lack of a unified theory to 

model and solve both continuous and discrete components together [46]. As a result, 

modeling and simulation is still one of the most useful methods to verify this kind of 

systems [47] [48] [49]. Hybrid systems simulation was enabled within the DEVS 

formalism by using a new method, called Quantizes State System (QSS) that will be 

covered in section 2.4.1, which allows modeling continuous components [50][51][52]. 

However, simulation does not guarantee the absence of defects from the system under 
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study. Simulation verifies the system for particular scenarios chosen by the system tester. 

As many hybrid systems are embedded in nature, and their failure could cause 

catastrophic results, it is of most importance to verify these systems for their adherence to 

requirements and their absence from defects. Formal methods can be used to provide 

such a guarantee. In doing so, a hybrid system needs to be modeled and verified within a 

formal framework. 

In order to use this algorithmic method (model checking through reachability analysis) 

to verify hybrid systems, the focus would be to find a suitable finite abstraction of the 

hybrid system that could be verified, and hence the reachability algorithm could be 

guaranteed to terminate. Different types of labelled transition systems were proposed to 

model hybrid systems abstractions including Petri Nets [53], hybrid automata [54] and 

TA [4]. 

 Some research has used hybrid TA for modeling hybrid systems and verifying them. 

This type of automata describes the system with a Timed Labelled Transition System 

(TLTS) and linear differential equations [54]. However, as Henzinger et al. shows in 

[55], Hybrid TA verification through reachability analysis is not decidable in general. For 

this reason, recent research has concentrated on modeling the hybrid system in some form 

with a decidable verification such as TA. In doing so, a technique must be used to model 

the continuous component in a discrete finite form. As continuous system variables are 

real values and dense in time (i.e. time scale is continuous and we have infinitely many 

time points in any bounded interval), their state space could be infinite. An 
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approximation to a finite representation is needed to enable the decidability and 

termination of reachability analysis. Many techniques have been proposed to approximate 

the continuous-time systems into a discrete representation of TA [56] [57][58][59]. 

Although DEVS is a discrete-event system specification, some work has been done to 

represent continuous systems in a discrete format that can be modeled and simulated with 

DEVS. One of these methods is Quantized State Systems (QSS) method [51]. Using QSS 

enables modeling and simulation of hybrid systems with DEVS formalism. 

2.4.1 The Quantized State Systems (QSS) method 

This section is devoted to give a general introduction to the QSS method, as introduced in 

[50] and [51]. The QSS is an approximation method to model and simulate continuous 

systems, which are usually modeled with Ordinary Differential Equations (ODE) and 

Algebraic Equations. This combination of equations describing the system behaviour is 

generally called Differential Algebraic Equations (DAE). Obtaining a detailed description 

of the system behaviour entails solving these equations simultaneously. In doing so, 

many different techniques of numerical integration have been proposed to solve ODEs; 

namely Euler, Runge-Kutta, etc [60]. These methods approximate the solution of ODEs, 

and they limit the error to an acceptable range based on the choice of its discrete 

integration step. All these methods rely on discrete-time integration of ODEs. In this way, 

time is allowed to progress in small steps, and at each step, an approximation is computed 

for the ODEs solution. When a system modeled by DAE has a discontinuity (i.e. a sudden 

jump in its variables values with regard to time), the numerical integration method may 
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produce unacceptable errors [52]. Unfortunately, this kind of discontinuity are normal 

properties of hybrid systems, which can be seen as operating in different modes, each 

described with a specific ODEs. An example of such a system would be a heating system 

with an on-off thermostat switch; in this system, the ODEs describing the system in the 

heating state (i.e., when the thermostat is in on position) are different from those 

describing cooling state (i.e., the thermostat is in the off position). 

   The Quantized State Systems QSS [50][51][60] is a different method for 

approximation, a quantization-based method that models hybrid systems as discrete-event 

systems and not as discrete-time. In the quantization-based method, instead of fixing a 

time step and calculating the value of the state variable at the next time step, we calculate 

when the state variable reaches a certain value. This value is called a quantization level, 

and the difference between two quantization levels is called the quantum. Obviously with 

a quantization-based method, the time it takes for a state variable to reach a quantization 

level depends on the state variable slope. The greater the slope, the less time it takes to 

reach the next level. This produces a variable time-step integration, which becomes an 

advantage when the system has a vector of state variables, in which each variable has a 

different change rate (slope). In this case, a variable with large slope would generate 

more events per unit time, than a variable with a flat slope. As DEVS is an event-based 

formalism, meaning it would only react to generated or received events, thus a slow-

changing variable would need less computations, than a rapidly-changing variable. This 

event-based property of DEVS also solves the above problem around discontinuities 



     

    34 

found while solving hybrid systems. In fixed time-step integration methods, the step 

boundary has to exactly match the point in time in which the discontinuity (or a system 

jump) happens. Otherwise, the integration would suffer major error if it assumes a 

continuous trajectory around the discontinuity and handles this in single time step. This 

problem however, disappears with discrete-event system simulation such as DEVS 

because whenever an event triggers a discontinuous transition in the system state, DEVS 

simulator would react to this event and calculate the system state resulting from that 

event as discussed in [51]. Thus, the integration slope (which is a part of the system state) 

before the event would be different from that after the discontinuity event. This would 

guarantee the correct calculation of the system variables before and after the system 

jump. Consider a continuous system modeled by a time-invariant Ordinary Differential 

Equation (ODE), and its State Equation System (SES) representation: 

  x˙ (t) = f[x(t), u(t) ) ] (Eq. 2.4) 

     Here x(t)   n represents the system state vector such as (x1(t),x2(t),x3(t),…xn(t)) and 

u(t)  m  represents an input vector , which is a known piecewise constant function. 

With the QSS method, we simulate an approximate system, which is called the Quantized 

State System:     

x˙ (t) = f[q(t), u(t) ) ] (Eq. 2.5) 

Where q(t) is a vector of quantized variables (q1(t), q2(t), …, qn(t)) that are obtained 

with the quantization function q from the state variables x(t).  
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Each component of q(t) is related to the corresponding component of x(t) by a 

hysteretic quantization function, which is defined here as given in [51]:  

“Definition 1. Let Q = {Q0,Q1, ...,Qr} be a set of real numbers where Qk−1 < Qk with 1 

≤ k ≤ r. Let Ω be the set of piecewise continuous real valued trajectories and let xi  Ω be 

a continuous trajectory. Let b: Ω → Ω be a mapping and let qi = b(xi) where the 

trajectory qi satisfies: 

qi (t) =  
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      Where: 

- Qm : is the initial quantization value at start of time t0. 

- Qk+1: is the next quantization level at time t if the function slope is positive and 

last quantization level the function has crossed was Qk. 

- Qk-1: is the next quantization level at time t if the function slope is negative, the 

last quantization level the function crossed was Qk, and the function value xi(t) is 

less than quantization level Qk by the hysteresis value ε.  

- t- is a point in time such that  t- < t 

The index m is described by: 
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Then, the map b is a hysteretic quantization function.    

The discrete values Qk are called quantization levels and the distance between two 

successive quantization levels (Qk+1 − Qk) is defined as the quantum, which is usually 

constant. The width of the hysteresis window is ε. The values Q0 and Qr are the lower and 

upper saturation bounds. Figure 4 shows a typical quantization function with uniform 

quantization intervals.” [51] 

As shown in figure 4, a hysteresis function approximates a continuous linear function 

xi(t) by outputting a number of discrete levels. The crossing of the continuous function to 

a quantization level generates an output. Notice however that the output value chosen of 

xi(t)  differs when the continuous function xi(t) increases from that when the function 

decreases. This difference or delay is the hysteresis window ε. Hence an output is 

dependent not only on the value of the function xi(t), but also on the history preceding 

this value. The use of hysteresis function is typically to prevent rapid switching of output 

if value of xi(t) fluctuates around some quantization level Qi. 

 

Figure 4: Quantization Function with Hysteresis (extracted, with permission, from [51]). 
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A DEVS model that solves (Eq. 2.5) by integration is called a quantized integrator 

and can be written as follows [51]: 

 

M1 = (X, Y,  , δint, δext, λ, ta), where: 

X = R× {inport} 

Y =  × {outport} 

S = 2× Z× R+
0 ∞ 

δint(s) = δint(x, dx, k, σ) = (x + σ · dx, dx, k + sgn(dx), σ1) 

δext(s, e, xu) = δext(x, dx, k, σ, e, xv, port) = (x + e · dx, xv, k, σ2) 

λ(s) = λ(x, dx, k, σ) = (Qk+sgn(dx), outport) 

ta(s) = ta(x, dx, k, σ) = σ 

(Eq. 2.6) 

 

  Where : 

R+
0 ∞ : Are the positive real numbers 

{Inport}: Set of Input ports. 

{Outport}: Set of Output ports. 
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σ1  = 
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     A static function f(z1, . . . , zp) can be represented by the DEVS model: 

M2 = (X, Y, S, δint, δext, λ, ta), where 

X =× {inport1, . . . , inportp} 

Y =  × {outport} 

S = p × +
0 ∞ 

δint(s) = δint(z1, . . . , zp, σ) = (z1, . . . , zp,∞) 

δext(s, e, x) = δext(z1, . . . , zp, σ, e, xv, port) =  

                    (˜z1, . . . , ˜zp,∞) 

λ(s) = λ(z1, . . . , zp, σ) = (f(z1, . . . , zp, σ), outport) 

ta(s) = ta(z1, . . . , zp, σ) = σ 

Where 



 


otherwisez

inportportifx
z

j

jv~  

               (Eq. 2.7) 
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As indicated in [51], this combined DEVS model of M1 and M2 simulates the QSS 

system.  

Figure 5 shows a DEVS coupled model for a QSS model as defined by (Eq. 2.6) and 

(Eq. 2.7). The Model M1 defines the integrator and the quantization function. This model 

has an input set X which contains pairs of (Real number, inport number), an output set Y 

that contains pairs (Real number, outport number), and a set of system states S that 

represents different states which the QSS system would have. Each state is represented 

with a tuple of the form (x,dx,k,) where x is the state variable value, dx is the state 

variable rate of change (slope),  k  is the index of the current quantization level Qk, and  

is the state lifetime. 

 

Figure 5: QSS Block Diagram Model 

 

The behaviour of model M1 is determined by its transition functions δint(s) and δext(s, e, 

x). The function δint(s) defines the internal transition function. This function transfers the 

system from its current state to a target state, and is executed when the state lifetime has 

elapsed. The target state of this function is always the next quantization level, which is 

expressed as the integration x + .dx = Qk+sign(dx) = Qk+1 (in case of a positive slope dx). 
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The lifetime of this target state 1 is the time needed to reach the next quantization level 

Qk+2 and is calculated as shown above in (Eq. 2.6). δext(s, e, x) defines the external 

transition function,  and it is triggered whenever an input reaches an inport. In this model, 

the input is a pair (xv,port) where xv is the slope calculated as xv  = f(q(t),u(t)), as shown in 

the diagram of Figure 5. The target state of this function is a new state with an updated 

value of the state variable xi+1 = xi+e.dx, new slope xv, and a new calculated lifetime 2 

equals to the time needed to reach the next quantization level. λ(s) in M1 is the output 

function and when triggered, it sends the value of the current quantization level to the 

outport. M2 models a static function that accepts q(t) and u(t) as inputs and calculates 

f(q(t),u(t).  

An example of the quantization of an exponential decay function is shown below. The 

continuous representation of the function is shown in figure 6, its linear approximation as 

defined by the QSS method is shown in figure 7, while its quantized representation is 

shown in figure 8.  

In this example, the quantum (the difference between two successive quantization 

levels) is taken to be dQ=1, and a set Q has 11 quantization levels Q = 

{0,1,2,3,4,5,6,7,8,9,10}. The system starts with an initial state variable value of 10. As 

formally described in (Eq. 2.6) and (Eq. 2.7) the QSS approximates the continuous 

function with linear segments, each segment extends between two consecutive 

quantization levels. Whenever this approximation crosses a quantization level, the output 

function is triggered and sends an event containing the current value of this quantization 
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level.  The linear approximation to the decay graph is shown in Figure 7. The discrete 

levels generated by this linear approximation, through QSS model, are shown as constant 

segments in figure 8. Details of QSS model and solution for this function will be 

discussed in more detail in chapter 4. 

 

Figure 6: Continuous function of exponential Decay 

 

Figure 7: Linear approximation of Decay formula 
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Figure 8: Quantized representation of Exponential Decay 

 

2.5 Introduction to Interval Arithmetic 

In many scientific measurements and computations, getting an exact answer is 

impossible. This is due to either uncertainty with measuring a physical value, or simply 

because some mathematical quantities cannot be expressed with the finite floating point 

representation in modern digital computers. Examples of this are rational numbers like 

2 or π. In this case, the computer representation of this value would be an 

approximation. The difference between this approximation and the exact value is a 

roundoff error. Performing arithmetic computations with these approximated values 

produces an approximated answer as well. In many applications, scientists and engineers 

like to know some bounds on the roundoff error. This led to the development of interval 

arithmetic as a way to say the true answer is somewhere between two numbers a,b which 

constitute a closed interval [a,b] where a ≤ b [62]. An interval [a,b] is a set {x | x  , a 

≤ x ≤ b }.  For example, we may calculate 2= 1.4142135623730950488016887242097 

with 31 decimal digits. However, if we have an application with a precision of only 2 
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decimal digits, we may get an answer of 1.41, or 1.42 depending on the way the 

calculator rounds the result down or up. In either way, we do not get the true answer, and 

this may not be acceptable for many applications. Using an interval to express the answer 

as [1.41, 1.42] guarantees the inclusion of the true answer.  

Ordinary mathematical operators can be defined for intervals, for example if A = [a,b],   

B = [c,d], then the following operations are defined for intervals [61] [62][63]: 

A + B = [a,b] + [c,d] = [a+c,b+d] 

A – B =  [a,b] + [c,d] = [a-c,b-d] 

A * B = [a,b] * [c,d]  = [min(a*c, a*d, b*c, b*d),max(a*c, a*d, b*c, b*d)] 

A / B = [a,b] / [c,d]  = [a,b] * [1/d,1/c]   if  0 [c,d]   

If we know that a,b,c,d are all positive numbers, then multiplication rule can be 

simplified as: 

A * B = [a,b] * [c,d]  = [ (a*c) , (b*d)] 

Arithmetic calculations for complex functions are also defined for intervals. There are 

about 18 different comparison operators for intervals, of which many do not exist for 

Real numbers. Moore [63] details many operations on interval arithmetic, properties of 

interval arithmetic, and computation algorithms for computing ODE solutions based on 

intervals. 

This brief introduction of interval arithmetic is sufficient for our purposes for this 

thesis as details of this analysis is beyond the thesis scope. We will propose to use 
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intervals and some of its arithmetic in section 5.1 for QSS verification as a way of 

bounding the true value calculated by QSS within some closed integer interval.  

2.6 Summary Discussion of the State-of-the-Art 

The approaches for the verification of DEVS that was covered during state-of-the-art 

survey have the following disadvantages when compared to the methodology introduced 

in this thesis:  

1. Subclasses of DEVS (as SP-DEVS, FD-DEVS or TC-DEVS) constrain classic 

DEVS in such a way that it reduces expressiveness, and thus their usefulness to 

the system modeller. This limits what the modeller can do, and renders some 

portions of existing DEVS models to be non-verifiable, unless they are re-

defined to match the subclass definition (and only when this is possible). 

2. The above subclasses of DEVS try to define their own reachability analysis by 

defining algorithms for building reachability graphs. These algorithms are 

based on basic model-checking algorithm, thus suffering from the same basic 

state-space explosion problem, and offer the same space-time complexity as 

standard model checking algorithms. These DEVS verification algorithms are 

implemented in ad-hoc model checking tools. Instead, there is a number of 

well-established model checking tools like UPPAAL and KRONOS, which 

have a large community of users and developers. These tools have 

implemented efficient data structures and optimizations that accumulated 

through years of research to optimize their performance. Nevertheless, such 
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tools cannot verify DEVS subclasses with DEVS-specific reachability 

algorithms because unless DEVS subclasses are translated to TA, which is the 

input language of these tools, DEVS subclasses verification cannot be handled 

by these tools. 

3. Some other approaches have translated DEVS models into another verifiable 

form such as TA, and then verified TA models by standard TA model checking 

tools like UPPAAL. These approaches, however, did not provide 

transformation based on formal behavioural equivalency between DEVS and 

TA. As a result, their transformation is not guaranteed to produce 

behaviourally equivalent TA for a given DEVS model. 

4. Translation from DEVS to TA in previous approaches did not specify a 

method to translate DEVS models that may be unverifiable because it contains 

irrational values, and hence did not provide a method to estimate any effect of 

approximation irrational values on the verification results. 

5. Previous translations approaches from DEVS to TA did not handle cases where 

DEVS model has continuous system components approximated with the QSS 

method. This excludes the hybrid systems from these verification approaches. 



     

    46 

Chapter 3: Thesis contribution 

In order to deal with the multiple limitations of other approaches discussed in section 2.6, 

this thesis introduces a new set of methods for modeling, simulation and verification. The 

main objectives are the following: 

1. Defining a methodology to translate models of  DEVS to models of TA. This 

methodology can handle DEVS models that may contain irrational values, thus it 

could be used to verify any existing DEVS model without the need to re-write it 

with a different DEVS subclass. 

2. The proposed approach translates DEVS to TA, through sound formal translation. 

This allows the use of standard tools like UPPAAL [9] to verify the resulting TA 

models. This approach takes advantage of numerous optimizations implemented 

in TA verification tools such as UPPAAL. TA was chosen for this research as it 

has strong theoretical background and mature verification tools such as UPPAAL 

and KRONOS. TA is also suited to state transition systems such as DEVS, while 

Timed Petri nets are suited more to process flow modeling [64]. The UPPAAL 

tool offers proven record of verification of industrial size problems with an easy 

interface that allows the user to enter the model and see the verification results. 

3. The proposed approach uses a translation methodology that is based on 

bisimulation as a basis of behavioural equivalency between DEVS and TA. This 
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equivalence relation is stronger than the trace equivalence [39], and it preserves 

all properties through the translation between the two models. 

4. The approach provides a method to approximate any irrational values that may 

exist in a DEVS model. It also bases its reasoning on the effect of this 

approximation on the well-known results of robust TA [65][66][67] as we will 

show later. This gives the modeller a way to know if this approximation would 

affect the verification results for the given DEVS model or not. 

5. The methodology extends existing verification methods to handle continuous 

systems modeled with DEVS through the QSS method. This enables the 

verification of hybrid DEVS models that contain discrete and continuous 

components. 

At present, the methodology introduced in this thesis has achieved the goals above.  

This was done by first providing a definition of a new class of DEVS, called RTA-DEVS 

[68], which is very close to classic DEVS in semantics and expressive power. RTA-

DEVS has followed FD-DEVS in restricting the time advance function to nonnegative 

rational numbers, but also relaxed the restriction of FD-DEVS on external transition 

functions. This makes RTA-DEVS closer to general DEVS than FD-DEVS. This enables 

the modeller to use a formalism that is more expressive than FD-DEVS to model a 

system and it is still formally verifiable. 

As a second step, this thesis also discusses a transformation from RTA-DEVS models 

to TA models based on the bisimulation relation between the two models. This 
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guarantees behavioural equivalence between the two models and preserves properties 

from RTA-DEVS into the resulting TA, and vice versa. This preservation is an important 

requirement to ensure that the verification results of TA are mapped back to RTA-DEVS 

models. Many classic DEVS models satisfy the semantics of RTA-DEVS models. Thus, 

they can be simulated with any DEVS simulator, and they can be transformed to TA to 

validate the desired properties formally. 

As third step, we enable the verification of classic DEVS models that may contain 

irrational values and thus cannot directly be transformed to RTA-DEVS (and 

consequently to TA). To do so, this thesis proposed a method to transform DEVS to 

RTA-DEVS , and an approximation of DEVS models to RTA-DEVS as we showed in 

[68]. We used an approximation technique for irrational values to maintain the behaviour 

of the original DEVS model. In addition, we propose a method to estimate any effect the 

approximation may have on the final DEVS verification results [70][71].  

Finally, a general method is proposed to model any QSS system with TA, thus 

enabling formal verification to continuous components modeled with the QSS method. A 

full list of published contributions, resulting from this work, is shown in the next section. 

In Figure 9, we show the thesis contribution on a diagram representing expressive 

power and decidability.  In this diagram, different formalisms are shown as ellipses. The 

containment relationship between a larger ellipse and a smaller one indicates that the 

expressiveness of the small is less than the larger one. In this diagram, we show some of 

DEVS subclasses (SP-DEVS, FD-DEVS and RTA-DEVS). These subclasses are less 
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expressive than TA. However, TA formalism and these DEVS subclasses lie inside the 

boundary of decidable reachability. As SP-DEVS and FD-DEVS expressive power is less 

than DEVS, we had the chance to insert RTA-DEVS between these classes and DEVS, 

thus having more expressive power than SP-DEVS and FD-DEVS. The thesis 

contribution focuses on moving the verification problem from DEVS undecidable 

reachability domain, to the TA decidable reachability domain, while preserving 

reachability and safety properties. The ellipses with solid lines represent known results of 

expressive power. The dotted line between RTA-DEVS and TA indicated that RTA-

DEVS expressive power is less than TA as evident by the work of this thesis; however 

the other direction of expressing TA models with RTA-DEVS was out-of-scope of this 

thesis.  

                          FD-DEVS                          FD-DEVS

SP-DEVSSP-DEVS

DEVS / QSS

TA

Decidable 
Reachability Boundary

RTA-DEVS

Thesis contribution

DEVS Model

Abstracted 
RTA-DEVS 

Model

Behaviourally 
Equivalent TA 

Model
QSS Model

Over 
approximated TA 

Model

Over 
approximated 

QSS Model

 

Figure 9: Thesis Contribution 
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3.1 List of Published Contributions 

 

 Hesham Saadawi, Gabriel A. Wainer. 2009. “ erification of real-time DEVS 

models”. Proceedings of DEVS Symposium 2009. San Diego, CA [72]. In this 

paper, we introduced a methodology for verifying Real-Time DEVS models. Our 

methodology applies recent advances in theoretical model checking to DEVS 

models. The methodology also handles the cases where theoretical approach is not 

feasible to cross the gap between abstract Timed Automata models and the 

complexity of the DEVS Real-time implementation by empirical software 

engineering methods. This contribution is described in chapter 4. 

 Hesham Saadawi, Gabriel A. Wainer. 2010. “Rational time-advance DEVS 

(RTA-DEVS)”. Proceedings of DEVS Symposium 2010. Orlando, FL. 2010.  This 

paper was selected as the runner-up best paper in the Symposium. In this paper, 

we introduced a new extension to the DEVS formalism, called Rational Time-

Advance DEVS (RTA-DEVS). The basic idea of this new formalism is to permit 

modeling the behavior of systems that can be modeled by classical DEVS; 

however, RTA-DEVS models could be formally checked with standard model-

checking algorithms and tools. In order to do so, we introduce a procedure to 

create Timed Automata models that are behaviorally equivalent to the original 

RTA-DEVS models [68]. This contribution is described in chapter 4. 
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 Hesham Saadawi, Gabriel A. Wainer. 2010. “From      to RTA-    ”. In 

Proceedings of the 2010 IEEE/ACM 14th International Symposium on 

Distributed Simulation and Real Time Applications (DS-RT '10). IEEE Computer 

Society, Washington, DC, USA, 207-210 [73]. In this paper we defined the RTA-

DEVS formalism to model and verify real-time embedded systems. In order to 

enable the formal verification of DEVS models, we introduced a procedure to 

approximate DEVS with RTA-DEVS. We also included the conditions for the 

valid approximated RTA-DEVS models and a calculation method for 

approximation errors that may be introduced. This contribution is described in 

chapter 4. 

 Hesham Saadawi, Gabriel A. Wainer. 2011. “Principles of      Models 

 erification”. Accepted for publication in: SIMULATION: Transactions of the 

Society for Modeling and Simulation International [70]. In this journal paper, we 

introduced our methodology to verify real-time embedded systems modeled with 

DEVS formalism. This is composed of a procedure to create Timed Automata 

models that are behaviorally equivalent to the original RTA-DEVS models, then, 

we described the use of the available TA tools and theories for formal model 

checking. Further, we introduced a methodology to transform classic DEVS 

models to RTA-DEVS, thus enabling formal verification of classic DEVS with an 

acceptable accuracy. This contribution is described in chapter 4. 
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 Hesham Saadawi, Gabriel A. Wainer, Mohammad Moallemi. 2012.  “Principles 

of DEVS Models Verification for Real-Time  mbedded Applications”. Real-Time 

Simulation Technologies: Principles, Methodologies, and Applications. K. 

Popovici, P. Mosterman Eds. Taylor and Francis. CRC Press. 2012 [71]. In this 

book chapter, we explained our proposed methodology to verify real-time DEVS 

models of embedded systems. A case study of mechanical robot and its controller 

was defined and verified using our methodology. This contribution is described in 

chapter 4. 

 Hesham  aadawi, Gabriel Wainer. 2012. “On the verification of hybrid      

models”. In Proceedings of the 2012 Symposium on Theory of Modeling and 

Simulation - DEVS Integrative M&S Symposium (TMS/DEVS '12), Orlando, 

FL,USA. March 26-28. In this paper [81], we introduced a new verification 

methodology, based on RTA-DEVS, Timed Automata and the QSS method, 

which allows verifying real-time hybrid systems modeled by DEVS formalism. 

This contribution is described in chapter 5. 

 Hesham  aadawi, Gabriel Wainer. 2013. “Hybrid Systems Modeling and 

Verification with DEVS”. In Proceedings of the 2013 Symposium on Theory of 

Modeling and Simulation - DEVS Integrative M&S Symposium (TMS/DEVS '13), 

San Diego, CA, USA. April 7-10. Submitted for publication. In this paper, we 

introduce a methodology to verify hybrid systems modeled with DEVS and using 
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general QSS method to model the continuous components. This contribution is 

described in chapter 5. 
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Chapter 4: The RTA-DEVS formalism   

In chapter 1 and chapter 2, we have discussed the issues that are faced by the developers 

of RT embedded systems, and we gave a brief background about current techniques and 

formalisms that we plan to use to solve some of these issues. To accomplish the objective 

stated in chapter 1, we need a simulation technique that is formally verifiable and has 

executable models. The latter is a property of Discrete-Event Systems Specification 

(DEVS) formalism [7], namely the facility to generate executable models from a discrete-

event specification. For DEVS to be also verifiable, this thesis proposes a complete 

methodology to verify different types of DEVS, thus enabling full life cycle of RT 

systems development using DEVS. This development life cycle can be described with 

traditional software development cycle where phases of analysis, design can use formal 

verification as part of its activities. The verification methodology proposed here is based 

on a technique of formal software verification called model checking [19]. The advantage 

of this technique is that it is fully automated and does not need human intervention to 

reveal errors in system design.  

As discussed earlier, the reason for introducing a new DEVS verification methodology 

is that existing methods limit verification to constrained subclasses of DEVS. This 

prevents the verification of wide range of existing DEVS models, and limits the modeller 

to use less expressive subclasses. In addition, the verification algorithms proposed for 
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these subclasses need specially written verification tools. However, these specially 

written verification tools may not add much value over standard timed model checking 

tools. This is because these algorithms have the same time and space complexity as those 

of timed model checking algorithms, and thus DEVS special verification tools do not 

provide any advantages over timed model checking verification. On the other hand, 

verification tools for timed model checking are widespread and they usually contain 

many performance optimizations [25]. 

In order to do formal verification of DEVS, the methodology proposed is comprised of 

a few steps. The first step is to introduce a new formalism based on DEVS, but restricted 

in its behaviour to be less than DEVS to be verifiable. The reason why we use a restricted 

class of DEVS as a first step, is that the formal verification of general classic DEVS is 

undecidable as Hernandez and Giambiasi shown in [27] (and we would discuss this in 

more detail later). Creating a restricted subclass of DEVS is a way to enforce some 

restrictions into the model that can be created according to this subclass. This would 

guarantee the ability to verify any model belonging to this restricted DEVS subclass. We 

decided to use the model checking method due to its advantages over other formal 

software verification methods such as deductive methods. As we discussed in chapter 1, 

the main advantage of model checking is that it is fully automated without human 

intervention, thus, it does not need advanced expertise in formal methods or formal 

proofs as opposed to deductive formal methods.  As DEVS is a timed formalism (i.e. 

transition functions defining DEVS behaviour contain time in their domain), timed model 
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checking was chosen to verify the proposed subclass of DEVS called Rational-Time 

Advance DEVS (RTA-DEVS) as published in [68] and we describe in this thesis in 

chapter 4. RTA-DEVS has followed FD-DEVS [34] in restricting the time advance 

function to nonnegative rational numbers, but also relaxed the restriction of FD-DEVS on 

external transition functions. This makes RTA-DEVS more expressive than FD-DEVS. 

However, RTA-DEVS still restricts the model in a way to remove the obstacles to formal 

verification. This restriction enables having RTA-DEVS models which are verifiable 

with standard formal verification tools for timed systems.  In this way, the introduction of 

RTA-DEVS can be seen as imposing restrictions on the type of DEVS models that can be 

verified. 

The second step shows a transformation from RTA-DEVS to TA. TA formal 

verification is decidable, and there are academic and industrial tools implementing this 

verification. However, TA is not designed to simulate complex systems, the physical 

systems around the embedded software, or to be deployed as executable models on target 

platforms. Instead, there are various DEVS environments that allow these; consequently, 

DEVS has been used in various efforts to model and simulate systems in their design 

phase. The transformation proposed here is based on the notion of bisimulation between 

RTA-DEVS and TA, which gives behavioural equivalency between the two formalisms, 

and it guarantees that any property in the RTA-DEVS model is preserved in the 

transformed TA model. The results of this work were published in [68].  
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The third step in the methodology is to find a way to verify any DEVS models that 

their definitions may not be restricted to RTA-DEVS specifications. To do so, a 

transformation from DEVS to RTA-DEVS is presented to obtain verifiable RTA-DEVS 

models as published in [73]. In that transformation process, we need to obtain an 

approximation to the DEVS model. In order to do so in a safe way, we introduce a 

mechanism to avoid introducing defects into RTA-DEVS when transforming from DEVS 

[73]. However, a question arises about the validity of transformed RTA-DEVS 

verification results when we apply it to the original DEVS model. In other words: how 

much confidence do we have in these results and what effect the approximation may have 

on the verification results?  

The fourth step is to answer the above questions using theoretical results of TA, and 

to apply this theory to the model under verification, in order to estimate any verification 

error that may result from the approximations. These results were shown in [73]. 

In the methodology defined in this thesis, we use timed model checking because of its 

advantages as a practical method in industrial systems. As mentioned earlier, one of these 

advantages is the full automation without a need from a practitioner to be fluent in formal 

method or mathematical proofs. Some of widely used tools for TA models verification 

are UPPAAL [9] and KRONOS [74][75]. 

A final fifth step includes the use of a methodology to verify Continuous systems 

modeled by the Quantized Sate Systems (QSS) [51]  method and DEVS. This would 
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enable verification of hybrid systems (with discrete and continuous components modeled 

with DEVS).  

With this, we provide a complete methodology that covers discrete and continuous 

DEVS components that can enable the formal verification of DEVS models. DEVS has 

the advantages of being based on a formal definition, with component-based hierarchical 

model construction, and is platform-independent. DEVS models are simulated within a 

DEVS simulator, which isolates the model from the implementation. This gives the 

advantage of avoiding any error that may creep between the steps of model verification 

and implementation by executing the verified model directly without mapping it to an 

executable code. This methodology gives the designer a comprehensive road map to 

verify different classes of DEVS models using standard formal verification tools.  

The following sections explain the RTA-DEVS definition, its transformation to TA 

using the bisimulation relation to guarantee behavioural equivalence, the transformation 

of any classic DEVS model into RTA-DEVS, and the estimation of any effect that this 

last transformation may have on the verification results of RTA-DEVS. Verification of 

QSS models are described in chapter 5. 

4.1 Rational Time Advance DEVS (RTA-DEVS) 

In [68], we proposed the RTA-DEVS formalism, a verifiable subclass of DEVS, with 

very much of the expressive power of DEVS. The difference in expressive power comes 

from the fact that RTA-DEVS does not accept irrational constants in its transition 

functions. However, as we see later, this difference in behaviour can be easily 
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approximated to any desired precision in RTA-DEVS and we present a method by which 

we can conclude if there is any effect on verification results from this approximation. 

As in classical DEVS, we define RTA-DEVS atomic model. The Atomic Rational 

Time-Advance is defined as: 

AMTC = < X, Y, S, int, ext , ta>        (Eq. 4.1) 

Where: 

- X: The set of external inputs. 

- Y: The set of external outputs. 

- S: set of system states.  

- int: S → S is the internal transition function (the same as in classic DEVS). 

- ext: T  X → S with T={(s,e) | s S, 0≤e≤ta(s), e  Q0,+∞} is the external transition 

function (e is the time elapsed since the last transition, which takes a positive rational 

value). 

- : S → Y  is the output function. 

- ta: S → Q0,+∞ is the time advance function that maps each state to a positive rational 

number. 

RTA-DEVS changes the definitions of time advance function ta and the external 

transition function ext from classic DEVS by removing the irrational time values. Other 

definitions stay the same, thus giving RTA-DEVS very close expressiveness to DEVS. 

A Coupled RTA-DEVS model is defined exactly as in classic DEVS. Coupled RTA-

DEVS models are composed of any number of atomic or coupled RTA-DEVS models: 
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CM ≡ X, Y, D, {Mi}, Cx, Cy, Select    (Eq. 4.2) 

Where: 

X: Set of external input events. 

Y: Set of external output events. 

D: Finite index of sub-components. 

{Mi}: The set of sub-components. A sub-component may be an atomic or coupled. 

iD is the index of the component. 

Cx: Set of input couplings. 

Cy: Set of output couplings. 

Select: 2D →D is a tie-breaking function, which defines how to select an event from a set 

of simultaneous events. 

A coupled RTA-DEVS model M can be simulated with an equivalent atomic RTA-

DEVS model, whose behavior is defined as follows [76]: 

M = < X, Y, S, s0, int, ext, λ, ta >   (Eq. 4.3) 

Where X and Y are the input and output event sets, respectively. X is the set of all input 

events accepted and Y is the set of all output events generated by coupled model M. 

S = ХiD Vi  is the model’s state. It is expressed as the Cartesian product of all the 

component’s states, where Vi is the total state for component i, 

Vi={(si,tei)|siSi,tei[0,ta(si)]}. Here, tei denotes the elapsed time in state si of component 

i, and Si is the set of states of component i. 
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S0 =  ХiD V0i  the initial system state, with V0i = (s0i, 0) is the initial state of component 

iD. 

ta: S→T  is the time advance function. It is calculated for the global state s S of the 

coupled model, as the minimum time remaining for any state among all components. 

Formally: ta(s)=min{(ta(si)-tei)| iD }  where s=(….,(si, tei),….) is the global total state of 

coupled model at some point in time,  si is the state of component i, and tei is elapsed time 

in that state. 

ext: X  V → S   is the external transition function for the coupled model. Where V is 

total state of the coupled model:  V={(s,te)|s  S, te  [0,ta(s)]}. 

int: S  → S      is the internal transition function of the coupled model. 

: S → Y  is the output function of the coupled model. 

In the following sections, we discuss RTA-DEVS and the mechanism to obtain a 

DEVS subclass, which removes difficulties to formal verification. Some of the most 

important of these difficulties is the irrational time values that could be defined in internal 

transition and external transition functions. RTA-DEVS restricts its functions definitions 

to the rational values, thus any valid RTA-DEVS model would be verifiable, as we have 

shown in [68]. 
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4.2 Estimate of Expressiveness Difference between DEVS and RTA-

DEVS  

There have been many proposed DEVS subclasses we shown in section 2.3. These 

classes restricted the original DEVS behaviour in order to achieve decidable reachability. 

In doing so, some of the expressive power of original DEVS is lost. Although we cannot 

quantify how much expressive power is lost, we can devise a relative measure for how far 

the expressive power of a DEVS subclass from the original DEVS.  If we look at the 

diagram shown in Figure 9, we observe that the wider the gap between the subclass and 

the DEVS, the more subclasses can be inserted in this gap. Therefore, we can take an 

relative measure of the gap width, from the ability to insert a number of DEVS subclasses 

in this gap. For example, SP-DEVS has much less expressive power than DEVS. This is 

evident by the fact that two other DEVS subclasses (FD-DEVS and RTA-DEVS) can be 

inserted between SP-DEVS and DEVS in the expressiveness diagram of Figure 9. Thus, a 

DEVS subclass “X” is closest to DEVS expressiveness when no other subclass “Y” can 

be inserted in the gap between X and the original DEVS. We claim this is the case here 

for RTA-DEVS as it is the closest DEVS subclass in its expressive power, and still has 

decidable reachability.   

Theorem: RTA-DEVS is the closest expressive and verifiable subclass to DEVS. 

Proof:  

We use induction to prove the above theorem. Assume there is another DEVS 

subclass, we call it X-DEVS, that is more expressive than RTA-DEVS and its 
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reachability is decidable. From RTA-DEVS definition, we know that ta(s) =  such that 

RTA-DEVS  { Q0,+∞ }, where Q0,+∞ is the set of positive rational numbers. Also from 

DEVS definition we have DEVS  { }, i.e.  DEVS  { Q0,+∞  IR0,+∞  }  where IR is the 

set of positive irrational numbers: IR = {2, 3, 5, ,…}. To define X-DEVS to be 

more expressive than RTA-DEVS, we extend its set of possible values of  to be more 

than RTA-DEVS. Any possible such extension to RTA-DEVS would have X-DEVS  { 

Q0,+∞  { x | x  IR0,+∞ } }. The least possible extension would be with only one element 

from the set IR, i.e. X-DEVS  { Q0,+∞  { 2} }. However, this makes reachability 

analysis of this subclass of DEVS undecidable as it can have an irrational value in its 

time advance function domain. This contradicts our assumption above, therefore we 

conclude that we cannot have any subclass of DEVS which is more expressive than RTA-

DEVS and still has a decidable reachability. 

4.3 RTA-DEVS to Timed Automata Behavioural Equivalence. 

To verify RTA-DEVS by applying existing theories and the tools for TA, a TA model 

must be constructed from the RTA-DEVS model in a way that guarantees its behavioural 

equivalency. DEVS, RTA-DEVS, and TA are all instances of Timed Labelled Transition 

Systems TLTS, and thus we would use here the methods of TLTS behavioural 

equivalence to move from one modelling formalism to another. We start our discussion 

here with a special case of TLTS which is the untimed LTS, and then we generalize our 

findings to TLTS. 



     

    64 

Generally there are two methods to check this (i.e., to see if two Labelled Transition 

Systems (LTS) are behaviourally equivalent), namely Trace Equivalence and 

Bisimulation. In [39], it was shown that, for RT Systems, trace equivalence is not enough 

to show the complete equivalence of two LTS. Although one can show the trace 

equivalency of two LTS (based on their acceptance or the generation of event traces), 

RTS usually have multiple concurrent components working together. Those components 

may go into a deadlock state in which no external event is observable. To show this, we 

will use an example that was introduced in [39] with some modifications. In this 

example, a user is interacting with an automated beverage machine that takes a coin and 

serves either coffee or tea. A LTS diagram representing the machine behaviour is shown 

in figure 10. The machine CTM1 shown in this diagram waits at state P0 for a coin to be 

inserted, then after coin insertion, it moves to state P1 to give the user a selection of tea or 

coffee. After serving the beverage, the machine returns to the waiting state P0. The 

behaviour of a user who always requires coffee can be represented in the LTS diagram in 

figure 11. This user puts the coin into the machine, and waits for the coffee to come out. 

We can see that CTM1 and the User would work together for the desired results of 

serving coffee. However, if we replace CTM1 with another machine with same 

observable behaviour (trace equivalent), we may replace it with something like CTM2 as 

shown in figure 12.  Both CTM1 and CTM2 have the same observable trace for an 

outside observer, as both machines accept a coin and then dispense either tea or coffee. 

However if the user uses CTM2, it is possible to CTM2 to take the coin and then reach 



     

    65 

state P`1 where it can only serve tea. In this case, the overall system composed of the 

User and CTM2 would reach a deadlock where the User waits for a coffee and the 

machine CTM2 cannot dispense it. This example shows that trace equivalence cannot 

reveal subtle errors such as this one. In a formal way to say this, trace equivalence 

preserves Linear Time Logic queries about the system. Queries with this logic cannot 

distinguish branches in the system behaviour. However, trace equivalence does not 

preserve Computation Tree Logic CTL that can distinguish between branches in system 

behaviour. 

P0

P1

P2

Coin?

Tea!

P3

Coffee!

 

Figure 10: Coffee-Team-Machine 1 (CTM1). 
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C0

C1

Coin!

Coffee?

C2
 

Figure 11: User Behaviour 

 

P`0

P`4 P`1

P`2

Coin?

Tea!

P`3

Coin?

Coffee!

 

Figure 12: Coffee-Team-Machine 2 (CTM2). 

Due to these subtle errors, bisimulation is a better notion for behaviour equivalence, 

and the same reason is valid for Timed LTS (TLTS), of which RTA-DEVS and TA are 

two examples. Formally, bisimulation preserves CTL query equivalence and thus can 

reveal such a subtle error in the example above. 



     

    67 

 Bisimulation is a relation between two TLTS (e.g., systems A and B), which 

establishes a relation between every state in A, and a corresponding one in B. It also 

relates every observable transition in A to a corresponding one in B. In [39], the concepts 

of Strong and Weak timed bisimilarity were defined for behavioural equivalence of 

systems. In strong bisimulation, the two systems have to match in every state and 

transition. This condition may be too strong for a system that contains internal transitions 

with no observable actions to an outside observer. In this case, this system would not 

fulfill strong bisimilarity to another system that does not have unobservable. For this 

reason, the authors in [39] discussed the notion of a weak bisimulation, where 

unobservable transitions cannot affect behavioural equivalency as long as they begin and 

end between two bisimilar states. In this thesis, timed Weak bisimilarity equivalence was 

used, as it is more general in its application than the conditions for strong bisimulation. 

Contrary to strong bisimulation, weak timed bisimulation allows definition of 

behavioural equivalence relation between two systems even if they differ on some 

transitions or number of states. This gives the transformation from RTA-DEVS to TA 

greater flexibility to add or remove transitions or intermediate states in TA model that 

may not be in the original RTA-DEVS. This reduction in states allows the optimization 

for the model checking by reducing overall model size. Also, more optimization can be 

done by using certain features of UPPAAL TA like committed locations or urgent 

transitions even if these states has no direct match in the RTA-DEVS model.  
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An example of this is shown in Figure 13. The model of (a) is an RTA-DEVS model 

where the system waits in state S1 for input a, then moves to state Aux1. This state 

lifetime is 3 time units. After this time interval, the system moves to state Aux2 with 

lifetime of 8 units, then moves to Aux3 and also after its lifetime interval elapses the 

system outputs b and moves to state S5.  The figure of (b) shows a TA model. This model 

is not strongly bisimilar to (a) as there are no states in (b) to simulate Aux1, Aux2, and 

Aux3. However, for our purpose of behavioural equivalence, these two models are 

equivalent by the weak bisimulation relationship as there is a weak bisimulation relation 

for states (S1, L1) and (S5, L3) that satisfies our concern of behavioural equivalence. 

This allows future enhancements to the transformation algorithms from RTA-DEVS to 

TA to reduce the number of states while preserving behavioural equivalence, thus 

reducing the resulting TA model size. 

 

S1
Aux1 Aux2 Aux3 S5

L1 L2 L3

a?

ta(Aux1) = 3 ta(Aux2) = 8 ta(Aux3) = 5

a?

X:=0 X >= 16 

(Aux3) = b

b!

(a)

(b)

 

Figure 13: (a) RTA-DEVS model.    (b) Timed Automata model 
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In the following paragraphs, we define behaviour equivalency based on timed Weak 

bisimulation. Then, following the conditions of this bisimulation, a TA model for the 

basic behaviour elements of RTA-DEVS is constructed with some unknown constants in 

its guards and invariants. Then, we construct equations for these constants, based on the 

definitions of bisimulation, to determine the values of these constants.  

Definition 2. Eventual transition relation ‘’: 

In a TLTS with states, s and t, the eventual transition relation defines a transition from 

state s to state t that may contain one or more of direct transitions labelled with non-

observable events to the outside world. If  we have an observable action a, a non-

observable action , and a transition label , then, for any TLTS [39], the eventual 

transition relation  between two states s and t on action  (written ts


 ) is defined if 

any of the following conditions is true:  

1. ts

 : There is a transition from s to t only composed of transitions labelled with 

non-observable actions. E.g., for the non-observable action , there is a transition 

ts *)(  , (where * defines one or more occurrences of these transitions). 

2. ts
a
 : There is a transition from s to t composed of one transition labelled with an 

observable action =a, and one or more eventual transitions labelled with non-

observable actions. E.g.,    ts
a

ss

 21

 for some states s1 and s2; 
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3. ts
d
 : There is an eventual transition relation from s to t with total delay d 

(called eventual delay transition), which is composed of one or more direct delay 

transitions combined with some non-observable action transitions. This represents a 

sequence of transitions with no observable actions whose total delay amounts to d. E.g., 

for action 
0

 d  and tt
d

stt
d

ss n
n

nn


 11

1

1
......  (with n≥ 0), for 

some intermediate states s1…sn, t1… tn and delays d1…dn with 



n

i
i

dd
1

 (where d is the 

total delay for the eventual transition from s to t; by convention, d=0 when n= 0). 

 

Definition 3. Weak timed bisimulation: 

 The Weak timed bisimulation is a binary relation R over a set of states of a TLTS. For 

example if  we have states s1, s'1, s2 and s'2, then R is a  Weak timed bisimulation s1 R s2 

[39] iff: 

 
11

s
d

s  , then there is a transition 
22

s
d

s  such that s’1 R s’2 as shown in figure 14. 

 11 sas  , then there is a transition 22 s
a

s  such that s’1 R s’2 as shown in figure 15. 

 22 sds  , then there is a transition 11 s
d

s  such that s’1 R s’2 as shown in figure 16. 

 22 sas  , then there is a transition 11 s
a

s  such that s’1 R s’2 as shown in figure 17. 
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Figure 14: Direct delay transition from s1 to s'1 and corresponding eventual delay transition from s2 

to s'2. 

In the figures 14 to 17, we express a state with oval shape, delay or action transition 

with an arrow, direct transition (i.e. single transition from one state to another) is 

represented with solid arrow, and an eventual transition is represented with dotted arrow. 

We chose using the Weak bisimulation relation to transform from RTA-DEVS to TA 

and vice versa, as this relation allows two models to be in bisimulation relation even with 

if one of them has a different number of transitions or states from the other, provided that 

these extra transitions are labelled with non-observable action . This relaxation 

over strong bisimulation allows more flexibility to tune the TA model for model checking 

performance while keeping the bisimulation relation to the RTA-DEVS model. 
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Figure 15: Direct action transition from s1 to s'1, and corresponding eventual action  

transition from s2 to s'2. 

 

 

Figure 16: Direct delay transition from s2 to s'2 and corresponding eventual delay 

transition from s1 to s'1. 
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Figure 17: Direct action transition from s2 to s'2, and corresponding eventual action 

 transition from s1 to s'1. 

4.3.1 RTA-DEVS internal transition semantics 

As shown in the previous section, TA expresses the notion of time through clock 

variables and constraints on them. Here, we present the RTA-DEVS behaviour in terms 

of its internal transition function, and then discuss how to obtain a behaviourally 

equivalent TA transition according to the previous definition of bisimulation.  

Within TA semantics, there are two conditions for a transition  to be enabled. These 

are the evaluation to true of the guard condition, and also the destination state invariant. . 

We apply these conditions here to derive the conditions we need for our transformation 

from RTA-DEVS to TA. The second condition, destination state invariant is true, is 

always satisfied within RTA-DEVS semantics. The following steps would work with the 

first condition of transition guard evaluating to true. 
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 By using these conditions to derive inequalities with the unknown constants, we 

determine the values of these constants in TA invariants and guards, in order to make TA 

model bisimilar to the RTA-DEVS model. 

 

Figure 18: RTA-DEVS Internal Transition. 

The RTA-DEVS internal transition semantics is shown as a DEVS graph in figure 18, 

and is defined as: 

δint(s1,e)=s3 if  e = ta(s1) = T 

In this semantics, this transition means that we move to state s3 when the elapsed time 

e in s1 equals the time advance value of s1 (which is T). In a TLTS, this can be defined as 

a time-elapse transition with delay d , assuming we start in state s1 with elapsed time e, 

this can be expressed in the form:  

31 sds     if  0≤e≤ ta(s1)  and d = ta(s1) - e 

This means that if we start at s1 with time spent in s1 equals to e, we need to delay d 

time units before changing to state s3. 

The other part of the semantic of the internal transition is that we stay in the same state 

as long as elapsed time e does not reach the time advance value of this state T. This is 

expressed as: 

δint(s1,e)=s1         if   0≤e<ta(s1) 
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This part of RTA-DEVS semantics can be defined for TLTS as a time-elapse 

transition on the form: 

11 s
d

s    if   0≤e≤ ta(s1) and 0 ≤ d < ta(s1) - e 

This means that if we start at s1 with time spent e, as long as time delay d is 

constrained as above, we stay at s1. 

In this thesis, we are using the operational semantics of UPPAAL TA as defined in 

[10]. For the graphs in the rest of the Thesis, RTA-DEVS states would be named as si, 

and the corresponding TA locations as Li (in which i is an integer number).  

 

Figure 19: TA model for an Internal RTA-DEVS transition. 

  

From the semantics of TA, the delay transition for the TA in figure 19 is defined as: 

),(),( 11
dtclockL

d
tclockL   ,    0 ≤ d < C     (Eq. 4.4) 

  

For this to define the RTA-DEVS delay transition, it should stay in the L1 state with a 

total delay d less than the time advance of s1.  Our target is to obtain the TA in figure 19 

to be behaviourally equivalent to the DEVS graph model shown in figure 18 through a 
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timed bisimulation relation. To do this, we will show that the state s1 is bisimilar to 

location L1, and state s3 is bisimilar to location L3. This is done using the definition of the 

Weak timed bisimulation relation (from RTA-DEVS to TA, and from TA to RTA-

DEVS).  We do these in steps 1 and 2 below.  

In this TA model, two locations are defined (L1 and L3), along with a transition from 

L1 to L3. L1 has an invariant on clock x (x < C) that allows the TA to stay in that location 

as long as the invariant is true. The transition from L1 to L3 has a guard (x ≥ C) that must 

be true for the transition to be enabled, and c is a rational number. The transition also has 

an update rule for clock variable x to reset it to zero before entering location L3.  By 

applying the condition above to weak timed bisimulation, first from RTA-DEVS to TA 

and then from TA to RTA-DEVS, a value for the constant C to preserve the bisimulation 

relation can be determined 

Step1: from RTA-DEVS to TA  

For the bisimulation of the states shown in figure 18 and figure 19, we have the 

following requirements: 

 s1 R L1: This is a delay transition from s1 to itself. If 11 s
d

s  for some value of d 

where 0≤ e ≤  ta(s1)  and  0 ≤ d < ta(s1) - e   ; then to satisfy the bisimulation 

relation we should have a transition in TA as: ),(),( 11
dexL

d
exL   for the 

same value of d. Therefore from the invariant of state L1 we get x<C  , then by 

substituting for x and d,  we get:  
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ta(s1) ≤ C (Eq. 4.5) 

 

 s3 R L3: Bisimilarity between s3 and L3 gives us the following: 

For the delay transition from s1 to s3, let us consider the execution of the DEVS 

internal transition )0,(),( 31
s

d
es  , where 0≤e≤ ta(s1)  and d=ta(s1)–e  by the 

TA transition ),(),(
31

dexL
d

exL  , with the reset statement x:=0 on 

the transition.  

In order for these two delay transitions to be equivalent, they need to start from 

bisimilar states, and after same amount of time delay, they reach two bisimilar states. To 

achieve this, the same value of delay d is used on both transitions. From this we deduce 

the constant C in the TA clock constraint to give the condition for bisimulation. The TA 

transition above starts from location L1, with the clock x valuation equals that of elapsed 

time e at the RTA-DEVS transition above; then after delay d of the RTA-DEVS 

transition, it transitions to L3, and the value of clock x increases by d.  

 By applying the conditions for this delay transition on TA transition above, we get 

(Eq. 4.6) from the TA guard (x ≥ C) and the valuation of clock x (x = e + d):  

ta(s1) ≥ C (Eq. 4.6) 
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This constraint means that as long as we use a constant C in the guard of the TA 

transition with some greater or equal value of the time advance of s1, the previous TA 

transition simulates the RTA-DEVS transition above.  

Combining (Eq. 4.5) & (Eq. 4.6) gives the condition ta(s1) = C for the TA shown in 

figure 19 to execute and simulate the DEVS graph as in figure 18. 

This condition guarantees the timed Weak simulation relation from the RTA-DEVS 

model internal transition of figure 18 to the delay transitions of TA in figure 19.  

Following this, we would show the condition of timed Weak simulation relation from TA 

to RTA-DEVS in step 2 below and this would complete the conditions for bisimulation 

between RTA-DEVS and TA. 

Step 2: From TA to RTA-DEVS  

To satisfy the other direction of the bisimulation relation, we convert the TA in figure 

19 with RTA-DEVS in figure 18. 

Case 1: TA delay transition ),(),( 11 dexL
d

exL   

Here, we need the value of clock x to be less than C in order for the L1 invariant  

(x < c) to be true and for the TA to stay in L1, i.e. 

e + d < C (Eq. 4.7) 
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For the RTA-DEVS time delay transition ),(),( 11 des
d

es  to stay in s1 after d, 

we need the sum of the elapsed time and delay to be less than the lifetime of s1, this is 

expressed as: 

e+d < ta(s1)  (Eq. 4.8) 

 

Case 2: TA transition      )0,(),( 31  xL
d

exL .  

 This transition starts from location L1 with a clock x equal to some elapsed time e in 

L1. After delay d, TA transitions to L3 and clock x is reset. On exit from L1, L1 invariant 

would be false and the guard on the TA transition would be true, these give (Eq. 4.9) as 

follows: 

          e + d = C  (Eq. 4.9) 

 

This is defined in RTA-DEVS as )0,(),( 31 sdes  ,  in which we need elapsed time 

e in s1 and a delay equal to the time advance of s1 to trigger the internal transition: 

          e + d = ta(s1)  (Eq. 4.10) 

 

From (Eq. 4.7) and (Eq. 4.8), we can determine c=ta(s1). With this value, we showed a 

timed simulation relation from TA (in figure 19) to RTA-DEVS (in figure 18). By having 

a simulation relation in both directions, the RTA-DEVS internal transition shown above 

is timed bisimilar and behaviourally equivalent to the TA timed transitions shown above 
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if we have the constant c equals to the lifetime of the corresponding state in RTA-DEVS 

model. This concludes that s1 R L1 and s3 R L3 by the bisimulation relation R. 

When the previous method is used to map internal transitions from RTA-DEVS model 

to transitions at a TA model and vice versa, the resulting transitions are guaranteed to be 

behaviourally equivalent.  We will show the same for RTA-DEVS external transitions in 

the following section.   

4.3.2 RTA-DEVS external transitions semantics 

The RTA-DEVS external transition function is defined as: δext : VD  X  S, where:  

 VD = {(s,e): sS, 0≤e<ta(s)}  

 

Figure 20: RTA-DEVS External transitions on action a. 

 

Figure 20 represents the following definitions for the RTA-DEVS external transition 

function: 

δext(s4,a,e) = s5  For  0 ≤ e < k  

δext(s4,a,e) = s6   For k ≤ e < ta(s4)  

Each of these transitions can be expressed as a time passage and action transitions as: 
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1. 44 s
kd

s  


 and 54 sa
s     

2. 4
4

4

)(
s

stadk
s  

  and 64 s
a

s   

From these expressions, the external transitions can be represented as the TA 

transitions shown in figure 21 assuming k = 3.  

 

Figure 21: TA model for RTA-DEVS external transition. 

From TA semantics, each of these transitions can be expressed as a time and action 

transitions as follows:  

1. ),()0,( 44 kxL
kd

xL  


  and )0,(),( 54  xL
a

kxL  for the first RTA-

DEVS transition. That is,  TA stays in L4 while elapsed time is less than k units, and then 

after this time elapses the TA takes a transition to L5 with action a. 

2. ),(
)(

)0,( 4
4

4 kxL
stadk

xL  


  and )0,(),( 64  xL
a

xL   for the second 

RTA-DEVS transition. That is, if the elapsed time in L4 exceeds k units and is less than 

the lifetime of s4, the TA transitions to L6 with action a.  
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These give the relation R between RTA-DEVS and TA model states: 4s  R L4, s5 R L5, 

and 6s R L6.  

Conversely, the simulation in the other direction from each of TA transitions to the 

RTA-DEVS external transitions above can be shown. Hence, this shows a bisimulation 

relation R between the corresponding DEVS and TA models above.  

4.3.3 An Alternative way to show bisimulation between RTA-DEVS 

Internal Transition and TA Transition. 

We may simplify the discussion in sections 4.3.1 by assuming the value of time advance 

function ta(s1) to be C and then checking the existence of bisimulation between RTA-

DEVS internal transition shown in Figure 18 and the TA transitions shown in Figure 19. 

In Figure 18, the semantics of RTA-DEVS internal transition gives a delay transition 

where the model stays in the same state as: 

11 s
d

s           ,  0 ≤ d < C 

This is simulated by the delay transition of TA in Figure 19 as: 

),()0,(
11

dxL
d

xL      ,  0 ≤ d < C 

Also a delay transition of Figure 18 where we the model moves to another state as: 

31 s
d

s      , d  ≥  C 

Is simulated by the delay transition of TA in Figure 19 as: 
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)0,()0,(
31

 xL
d

xL   , d ≥ C 

We can also see the simulation relation in the other direction as TA transition of 

Figure 19 is simulated by RTA-DEVS transition of Figure 18. These two simulations 

establish a bisimulation relation between the transitions in the two figures.  

4.4 An algorithm for behavioural equivalence 

In our published works [68] [69], we introduced the following methodology to transform 

RTA-DEVS models to TA models.  

1. Define a clock variable for each atomic RTA-DEVS model (i.e. clock x). 

2. For all constants defined in ta(si), and δext(si)  if any rational numbers exist, 

convert the model scale to make them integers as shown in section 4.5. 

3.  Replace every state in RTA-DEVS with a corresponding location in TA (i.e. L1 

for source s1 and L2 for destination s2). 

4. Model the RTA-DEVS internal transition with TA as follows:   

 Reset the clock variable on the entry to each state (x:=0). 

 A source state L1 and a destination state L2. 

 Put an invariant in the source state derived from the time advance function 

for that state, i.e. x < ta(s1). 

 Define a transition with a guard. This guard should be the complement to 

the invariant in the source state, i.e. x ≥ ta(s1). 

 Define an action for each output function defined. 
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5. The RTA-DEVS external transition is modeled in TA with the following items:   

  A source state and some destination state(s), i.e. L1 for source s1 and L2 for 

destination s2. 

  A clock reset on the entry to each state. 

  An invariant in the source state that corresponds to time advance function for that 

state, i.e. x<ta(s1). 

 For the external transition(s) with guards of clock constraints, these constraints 

should be disjoint to obtain a deterministic TA model. 

  The action label on TA transitions for each RTA-DEVS input event to source 

state s1. 

A formal definition of the algorithm is given as follows: 

Transform_RTA-DEVS_To_TA(in RTA-DEVS, out TA)  

{ 

1. Declare a set of clocks C = {xi | 1≤ i ≤ |D| }, where i is the index of component 

dD 

2. Convert rational numbers defined in RTA-DEVS model to integers as described in 

section 4.5. 

3. Define a TA location for each RTA-DEVS state and define location invariant if 

necessary: 

For each d D do 

 Nd = {lj | dj Ss  , dD}  //component N of TA model corresponding to component d  
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 β( C )lj  = { xi ≤ ta(sj) | dj Ss  , 1≤ i ≤ |D|, ta(sj)< ∞} 

end do 

4. Define a set of channels for communication between TA components: 

H = {aj | j IC} 

5. Define set of TA transitions for RTA-DEVS internal transitions: 

  set E = Ø;   //Initialize the set of TA Transitions 

For each d D do 

For each  sj  Sd do 

If ( ta(sj) < ∞ && δint(sj) = sk && λ(sj) = a ) then 

E = E  (lj, xd ≥ ta(sj), a!, xd := 0, lk); 

end if 

end do 

end do 

6. Add TA transitions corresponding to RTA-DEVS external transitions: 

For each d D do 

For each  sj  Sd do 

If (δext(sj, a, cond(e)m  ) = sk m) then 

E = E  (lj, cond(xd)m ), a?, xd := 0, lkm); 

end if 

end do 

end do 
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// whenever:  δext(sj,a,e) = sk1 cond(e)1:  0 ≤e<c1 

//                =  sk2 cond(e)2:  c1 ≤e<c2 

… 

//              =  skm cond(e)m:  cm-1 ≤e<cm 

// then we have define   cond(xd)m  = cm-1 ≤xd<cm 

// where cond(xd)1, cond(xd)2, …., cond(xd)m are convex polyhedra (i.e. described 

//by a   finite number of linear inequalities) 

} 

From steps of 5 and 6 in the above algorithm, we see that this algorithm has a linear 

time complexity O(n*m), where n is the number of atomic components of the input RTA-

DEVS model, and m is the maximum number of states in a single atomic RTA-DEVS 

component. 

By applying the previous algorithm, we obtain a TA model that executes every 

transition defined in the RTA-DEVS model under study. As we know, the RTA-DEVS 

behavior is completely defined by its transition functions, which defines all transitions in 

RTA-DEVS model. Thus, the resulting TA model executes the RTA-DEVS. The 

behavioural equivalence of the resulting TA model to the original RTA-DEVS model has 

been verified theoretically with the bisimulation relation as we showed in sections 4.3.1, 

4.3.2, and 4.3.3. This also was verified with a practical example as introduced in section 

4.8.  
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Table 2: Transformation of RTA-DEVS to Behaviourally Equivalent TA. 

RTA-DEVS Equivalent TA 

Internal Transition 

 

 

ta(s1) = C,  δint(s1,e)=s3   

 

clock  x; 

External Transition 

 

 

 

 

 

 

ta(s4)= C,   

δext(s4,a,e) = s5, 0 ≤ e < 3  

δext(s4,a,e) = s6,       3 ≤ e < ta(s4)  

 

clock  x; 

S4 

S5 

S6 

a? 

a? 
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4.5 Resolving rational numbers in RTA-DEVS model 

Timed safety automata, as defined in section 2.2.1, only deals with bounded integer 

variables. This restriction is made to guarantee the finiteness of state-space, and hence 

termination of reachability algorithm [5]. This may seem a limitation when one is trying 

to verify RTA-DEVS models which have constant values of type Real, in their transition 

functions. However, this is not  much limitation, as any group of real rational numbers 

can always be represented as integer numbers. This is done in TA model by changing the 

model time scale. For example, imagine we have the following values as constants 

defined in RTA-DEVS transition function to represent time in minutes (1/2, 3/5, 3/8). To 

convert these to integer numbers on an equivalent TA model, we multiply each of them 

by the least-common-multiple of all the denominators. The resultant automaton would be 

equivalent modulo time scaling. This makes the TA having the values (1/2 * 40, 3/5 * 40, 

3/8 * 40) = (20, 24, 15) and its time scale is 1/40 of a minute. For a network of TA, i.e. 

many TA models interacting together in a larger model, the scaling has to be done in all 

the models in the network. Therefore, all constants in a network of TA would be 

multiplied by the scaling factor. This should not affect the verification results as long as 

any requirement to be verified is expressed as a system query, in which its constants are 

scaled with the same factor as well.  
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4.6 DEVS to RTA-DEVS  

One of the main obstacles in verifying classic deterministic DEVS models through 

transformation to TA is the possibility of DEVS models to have irrational constant values 

in their internal or external transition functions. When doing the previous transformation 

from DEVS model to TA, this would produce TA model with irrational constant values 

in its guards or state invariants. However, such TA model reachability analysis would be 

undecidable as shown in [69]. This implies that for any DEVS model containing state 

lifetime of irrational values, it will not be possible to directly apply the transformation 

shown in table 2. In this case, the irrational values would need to be approximated to the 

nearest rational value according to the modeller’s choice, based on the required precision 

for the equivalent RTA-DEVS model. In doing so, the transformation should take into 

account the following rules. These rules when applied, avoid building invalid RTA-

DEVS or TA models containing time-action locks (that prevent the model execution 

progress), or loops where execution progresses infinitely without allowing time to 

advance [77]. 

Rule I: When approximating an irrational value of a state lifetime, and the internal 

transition output of this state is coupled with an external transition, the choice of the 

approximation value should be consistent for all constants using this irrational number. 

Formally, if the DEVS coupled model as shown in figure 22 is defined as the following: 

δ
A

int(Si,Cirr)=Sj  ,  λ
A(Si) = a  , taA(Si) = Cirr 

δ
B

ext(Sk,e,a)=(Si,0)           Cirr ≤ e < ∞ 
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δ
B

ext(Sk,e,a)=(Sm ,0)              0 ≤ e < Cirr 

It should be approximated in RTA-DEVS as: 

δ
A

int(Si,Cr)=Sj  ,  λ
A(Si) = a  , taA(Si) = Cr 

δ
B

ext(Sk,e,a)=(Si,0)           Cr ≤ e < ∞ 

δ
B

ext(Sk,e,a)=(Sm ,0)              0 ≤ e < Cr 

Where: 

 Cirr: is an irrational real number. 

Cr : is a rational real number. 

δ
A

int, λ
A, taA : Functions defined for component A. 

 

Figure 22: A coupled DEVS model. 

Rule II: When approximating an irrational value for elapsed time in the definition of 

the external transition function, the choice of the approximation value should be 

consistent for all constants using this irrational number. Formally; if the following DEVS 

external transition function is defined in a model similar to the one shown in figure 23: 
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δext(Si,e,a)=(Sj,0)    Cirr ≤ e < ∞ 

δext(Si,e,a)=(Sk,0)    0 ≤ e < Cirr  

It should be approximated in RTA-DEVS model on the following form to avoid 

creating action-locks: 

δext(Si,e,a)=(Sj,0)    Cr ≤ e < ∞ 

δext(Si,e,a)=(Sk,0)    0 ≤ e < Cr  

The second rule is to avoid action locks that may happen if we define the external 

transition function with conditions on its transitions where there is a gap in time (in 

which the function is not defined). Another possibility is to have an approximated 

external transition function in which conditions on different transitions overlap in time, 

thus creating non-determinism that is not in the original DEVS model. 

 

Figure 23: RTA-DEVS component with External Input. 
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4.7 Estimation of Approximation to Verification Results 

When we approximate irrational values that may exist in a DEVS model to obtain the 

equivalent RTA-DEVS model, we get an approximation error Δ between irrational value 

and its approximated number. The next question is how the approximation of irrational 

constants in ta or ext affect the formal verification of RTA-DEVS models. Would a result 

obtained from model checking RTA-DEVS models apply to the original DEVS?   

When we approximate an irrational constant Cirr with a rational constant Cr, we 

introduce an error ∆ such that Cirr = Cr ± ∆. This error appears whenever Cirr is used in a 

time advance function or in an external transition function. Verification of RTA-DEVS 

through transforming it to an equivalent TA is done through reachability analysis. Would 

this analysis differ by introducing the error ∆ when we move from DEVS to RTA-

DEVS? Answering this question directly requires applying reachability analysis to the 

original DEVS with irrational constant values, and again for the transformed RTA-DEVS 

model with the rational values, then comparing results. This approach however is not 

feasible as reachability analysis for timed models with irrational constants is proven to be 

undecidable as shown in [69].  

Therefore, there is a need to use an approximate approach to estimate the effect of ∆ 

on the reachability analysis. This problem is equivalent to the problem of TA robustness 

[65]. A robust TA model accepts an input sequence of events within a time interval. Each 

event is accepted within a bounded time interval instead of an exact point in time as per 
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normal TA. This is called a bundle of events that are close in time and the model still 

behaves the same with this bundle input. 

Puri [78] extended the notion of robust TA to include models that their reachability 

analysis is unaffected with small drifts in clock models. In this definition, a model is not 

robust if for any small drift in clock rate, the reachability results change. In [66], De Wulf 

et al. proved that clock drifts in TA are equivalent to having a reaction delay by the 

implementation. This delay can be seen as an increase of guard constants by a small 

positive value Δ. The robustness problem is then transformed to a problem in which one 

needs to find a value Δ that keeps verification results correct. Further work by De Wulf et 

al. [67] showed a methodology to assess a model for implement-ability by using standard 

TA model checking tools, and also showed a proof that if a model is tolerant to a certain 

value Δ, it would also be correct with any value Δ′ such that Δ′ < Δ. 

 We used the results from the robustness theory of TA to check if formal verification 

results of a RTA-DEVS model correctly applies to the original DEVS model, and this 

work was published in [69]. Given an error Δ introduced by approximating irrational 

numbers in a DEVS models, we use an enlarged time interval with Δ to model the 

possible transition from a state in a non-deterministic fashion. For example if we have the 

following definition of DEVS external function δext: 

δext(Si,e,a)=(Sj,0)    Cirr ≤ e < ∞ 

δext(Si,e,a)=(Sk,0)    0 ≤ e < Cirr  
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and we have Cirr = Cr ± ∆, then, we enlarge the interval in which the external transition 

is enabled, i.e. to define δext as: 

δext(Si,e,a)=(Sj,0)    Cirr - Δ ≤ e < ∞ 

δext(Si,e,a)=(Sk,0)    0 ≤ e < Cirr + Δ 

These modified intervals results in an overlap interval as shown in figure 24. In this 

overlap, the TA behaves non-deterministically to choose either right or left time interval 

to follow. This non-determinism would cover all reachable states within reachability 

analysis, thus covering any value Δ′ such that Δ′ < Δ. 

 

Figure 24: Overlap of two intervals because of approximating irrational value. 

Using the above approach for irrational values, any DEVS model is transformed to an 

equivalent TA as shown in the previous section and as we have shown in [68]. This TA 

model is then checked against the desired properties. With non-determinism in the model, 

UPPAAL checks the transition function in the overlap interval, covering the point around 

the irrational number value. Hence, if the model checking results were correct, we 

Cirr  

∆  ∆  

Cr1 Cr2 

Cirr ≤e≤∞ 0 ≤e≤ Cirr 

Cirr -Δ ≤e≤∞ 

0 ≤e≤ Cirr + Δ 

Overlap 
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conclude that the approximation did not introduce errors to the RTA-DEVS model. On 

the other hand, if the verification results show a violation to the desired properties, we 

can conclude that this model with the approximated value Cr does not hold the desired 

properties. Hence, the designer needs either to select another value of Cr by reducing the 

error Δ, or if this is not feasible because the designer needs a model that can tolerate a 

large error value, the current DEVS model need to be revised to hold the desired 

properties and then it can be re-verified again to confirm this. 

4.8 Case study: an Elevator Control System 

To show the above-proposed methodology of estimating the effect of approximation on 

reachability results, we modified an example originally introduced in [72]. That example 

defines an elevator system composed of an Elevator, the Elevator Controller and an 

Environment that represents a user pressing different buttons. The elevator controller 

interacts with the user to receive button requests from each floor. Then, it makes the 

elevator move to respond to the user requests. This is an example of a (soft) Real-Time 

System with safety and bounded response time requirements. This example was 

transformed from RTA-DEVS to TA, and verified to work correctly in UPPAAL. A 

summary of this case study, originally presented in [68], is given below.  

 The elevator model shown in figure 25 represents the different states of the elevator 

movement and transitions between these states. This is an abstract model of the elevator 

where some details like door operation, floor display, etc. have been ignored (as we are 

only interested in controlling the elevator movement). The elevator starts in the stopped 
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state and waits for the controller commands to move (satisfying a button request from the 

user). The controller takes the decisions for direction, start and stop of the motors. 

The elevator DEVS graph model in figure 25 has 5 external transitions, shown with solid 

arrows; and three internal transitions (one internal transition from aux state to stopping 

state is hidden under the external transition shown in the figure), shown with dotted 

arrows. Note that an external transition is enabled whenever the expression on that 

transition evaluates to true in RTA-DEVS model.  

 

Figure 25: Elevator RTA-DEVS Model. 

 The expression Value(mover) evaluates to true whenever the elevator model receives a 

value in mover variable equals to 1. This expression is translated to a channel reception 

move? as shown in the TA model in figure 26. In this case, whenever a value is 

transmitted on that channel, the transition synchronized on that channel is enabled. By 

taking each transition from the RTA-DEVS model and applying the previous steps of the 

algorithm in section 4.4, we get the behaviourally equivalent TA model shown in figure 
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26. Also note that time advance values for each state in RTA-DEVS model, has been 

substituted with an equivalent clock invariant in the corresponding state in the TA model, 

and the constant in that invariant equals state lifetime as indicated on the RTA-DEVS 

model. 

 

 

Figure 26: Elevator TA model. 

The elevator controller is also responsible to interact with the user and send commands 

to the elevator to satisfy the user requests. The controller RTA-DEVS model is shown in 

figure 27 and represented in DEVS graphs notation. In this model, we abstract the 

behaviour of the controller to being in one of possible 6 states. These states represent the 

elevator in regards to its movement direction and its acceleration. The states are 

StdByStop that represents the elevator in a complete stop and ready to move for any 

coming requests, Moving in which the controller makes a decision to move the elevator 
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based on current floor and the button pressed floor, StdByMov corresponds to the elevator 

moving to the desired floor and the controller in that state receiving sensor signals to 

decide when to stop the elevator, aux which serve as a dummy state with internal 

transition that is executed immediately after reaching that state, the state purpose is to 

enable the test of the sensor value on the external transition to it with the function 

equal(sensor,floor), Stopped which corresponds to the controller deciding to send a signal 

to the elevator to slow in preparation to stop, and Stopping corresponds to the controller 

waiting for the elevator to get into complete stop and send a stop signal to the controller. 

 

Figure 27: Elevator Controller Model as DEVS Graphs. 

In this model, the controller would be in StdByStop state waiting for a button request to 

move. Whenever it receives the button request, it would trigger an external transition, and 

compare the button floor to the cur_floor of the elevator. Based on this comparison, the 

controller would determine the direction in which the elevator should travel to, and stores 
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this info into the direction variable. The controller then reaches Moving state that has a 

lifetime of zero time units. Therefore, an output function is executed to send the direction 

information through the port move to the elevator model, and an instantaneous (with no 

time advancing in Moving state) internal transition would be triggered to change the state 

into StdByMov state. The controller then decides to change to stopped state if the sensor 

reading matches the desired floor; otherwise, it would loop between aux state and 

StdByMov states as shown in the figure (please note the double head arrow between states 

StdByMov and aux that shows two transitions in opposite directions). 

We applied the transformation steps shown in section 4.4 to the elevator controller 

RTA-DEVS model to obtain TA shown in figure 28. 

 

 

Figure 28: TA Controller model in UPPAAL. 

 In order to model input to the system, we construct an automaton that would send the 

button and sensor inputs to the controller as in figure 29. This automaton is necessary to 

make the TA system under study a closed model. In order for model checking techniques 
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to be able to verify desired properties, they must work on closed systems as model 

checking would explore all possible system transitions to be able to determine if the 

desired property is met or not. Therefore, a good modeling of the system environment is 

also necessary to completely check all possible system behaviours for all expected 

environment inputs. However, modeling different environment behaviours is out of scope 

of this thesis and it is left for the modeller to choose a model that best describes system 

environment. In this thesis, we built a simple environment to test our verification 

methodology to DEVS model. In other systems, the modeller may need to build a 

sophisticated environment model that covers a bundle of scenarios as an input to the 

system being verified. TA models can cover a range of scenarios as it can be 

nondeterministic; however a suitable DEVS class with non-deterministic behaviour has to 

be chosen to model such an environment. 

 The environment modeled in figure 29 is responsible for sending button and sensor 

events to the controller. It starts at S1 state, after staying in this state for 5 time units, it 

sets variable button to 3, then synchronizes with controller TA on channel buttonc. 

Again, waits in state S2 until its clock y reaches 10 time units, sets sensor to 1, and 

synchronizes with the controller on channel sensorc. This process continues for the 

desired inputs sequences to the controller, and then resets the clock and restarts again at 

S1. 
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Figure 29: Environment inputs (Button and Sensor). 

After translating our DEVS model to an equivalent TA model, we can use model 

checking to answer questions about our DEVS model behaviour that otherwise would 

have needed to fully simulate all possible executions of the DEVS model to get the 

answers. Some of the important questions would be: 

a. Does our DEVS model execution stop at one point without being able to progress 

(having a deadlock)? 

b. If no deadlocks are found in the DEVS model, is it always guaranteed whenever a 

user pushes a floor button that the elevator would reach that floor (normal operation as 

desired for the elevator system)? 

c. In case the elevator eventually reaches the requested floor, is there a time upper 

bound between the request and the arrival of the elevator that our model would always 

guarantee to happen? 
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In order to answer these questions, we formulated these questions into formal queries 

to the TA model. For the first question, we applied the UPPAAL verifier to our model to 

check for any deadlocks that may be present in the elevator model. To check for that 

failure, we have formulated a simple query in UPPAAL. It is expressed in UPPAAL 

Computation Tree Logic CTL query language [9] as: 

A[] not deadlock 

After running the checker, it shows that this property is satisfied, i.e. there is no 

deadlock in the DEVS model as results shown in figure 30.  

 

 

 

 

UPPAAL version 4.0.6 (rev. 2986), March 2007 -- server. 

A[] not deadlock 

Property is satisfied. 

Figure 30: Elevator Verification Results in UPPAAL 

 

To answer the second question, we need to check for the liveness property, i.e. 

something would eventually happen. In our case, for the proper operation of the 

controller within the coupled system, we are interested to check if by pressing a certain 

floor button, the elevator would eventually reach that floor. For example, if the user 
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presses the 3rd floor button, the elevator would eventually reach the 3rd floor. This 

property is expressed in CTL as: 

button == 3 --> ElevatorController.cur_floor == 3 

This property was satisfied as well in UPPAAL model checker for the given model. 

However, for a query as: 

button == 3 --> ElevatorController.cur_floor == 4 

the property is not satisfied as we expect. By pressing 3rd floor button, given the elevator 

initially stopped at 1st floor, there is no way the elevator would reach the 4th floor. 

To answer the third question, i.e. to know if the elevator would reach the requested 3rd 

floor within some bounded time. We extend the model for bounded time checking by 

adding Boolean variable b, and a global clock z as shown on the Elevator model. Variable 

b would be set to true as long the elevator starts traveling and until it reaches the Stopped 

state again. Therefore, by checking the accumulated time while b is true, it would give us 

the property we need to check. Then, the property would be expressed with the following 

query: 

 A[] ( b imply z < 27 ) 

which is satisfied. However, the following query is not satisfied: 

A[] ( b imply z < 26 ) 

This shows that the elevator would reach the 3rd floor after requested there by no less 

than 26 time units, but guaranteed to be there at 27 time units or more. More complex 

queries to check for more properties could also be formulated and verified by UPPAAL 

in case that we have a more complex DEVS model. 
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Figure 31: Elevator-Controller in DEVS Graphs notation with irrational value. 

To show our proposed methodology for approximation error estimation, we changed 

the example by introducing an irrational value in the controller model. State stdbyMov in 

figure 31 would now have time advance value of 1000007  instead of 1000 as was in 

figure 27. This value can be approximated as 1000007  ≈ 1000.003 or 1000007  ≈ 

1000.004, thus giving an approximation error ∆= 0.001. 

These approximations are rational numbers and to obtain integer numbers on the 

equivalent TA model, we used the method discussed in section 4.5 to re-scale time on the 

model by multiplying the initial scale by 1000.The resulting TA model is shown in figure 

32. 
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Figure 32: TA Controller model with Non-deterministic behaviour. 

In this model, we added node E and a transition from StdByMov to E that is enabled at 

elapsed time of x ≥ 1000003. This TA is semantically equivalent to the DEVS model in 

figure 31. However, this TA allows the transition from node StdByMov to node Stopped 

to be taken non-deterministically in the interval [0,1000004] while transition to E is 

enabled in [1000003,∞]. This ensures covering the interval [0, √1000007] in UPPAAL 

model checking. 

The model checker was run to verify the non-deterministic version of the elevator-

controller model along with the other components in the elevator system as we showed in 

[68]. The verification results were successful as was before for the deterministic version 

in figure 28. This indicates that the approximation error did not affect the verification 

results. Hence, for any value smaller than 0.001, the results would not be affected as was 

proven by De Wulf in [67]. 
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Although we could not verify the DEVS model in figure 31 directly as a result of the 

irrational value of time advance function, our methodology approximated this model to a 

behaviourally equivalent TA, which could be used to verify the TA model. 

 

4.9 Known Methodology Limits 

It is a well-known problem of all model checking techniques that the number of nodes 

in the reachability graph grows exponentially in the number of components and number 

of states of each component. This is called the state-space explosion problem. Model 

checking algorithms need to store a representation of the full reachability graph to be able 

to terminate after visiting all nodes of the graph. Due to the exponential growth of 

reachability graph, even if timed model checking is decidable with TA, there is a 

limitation of the practical size of models that can be checked with current tools and 

hardware.   

This limitation also limits the size of DEVS models that can be verified with our 

methodology. However, as we show in section 6.1.1, our methodology can be extended 

by some techniques that reduce the size of reachability graph and hence scale the 

methodology to verify larger sizes of DEVS models. 
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Chapter 5: Hybrid DEVS Systems Verification. 

5.1 Continuous-Discrete systems Verification 

In chapter 3 of this thesis, we introduced a methodology to enable the verification of 

deterministic and discrete DEVS models. Although the method is useful for deterministic 

discrete systems, in the case of RT embedded systems a discrete controller needs to 

interact with some physical environment that is continuous in nature. Examples of these 

are automobile cruise-control systems, boiler temperature or pressure control systems, 

heating and air conditioning systems, and power-plant systems. The controlled variables 

in these environments are continuous, and they are modeled using differential algebraic 

equations. However, the computer controller system is a discrete digital system. This 

makes the models of control systems a hybrid between continuous and discrete 

component models.  

In order to overcome the problem shown in section 2.4 for hybrid systems verification, 

we introduced a technique within the DEVS formalism to model, simulate and verify 

hybrid systems. This technique uses the QSS method shown in section 2.4.1 to provide a 

way to model the continuous components. With this ability, we have an overall 

methodology in which a designer is able to model and simulate hybrid control and 

embedded systems within DEVS. Then, with this research results, the designer would be 
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able to formally verify the hybrid model to guarantee the system correctness. This 

methodology is built on the verification of DEVS & RTA-DEVS models discussed in 

chapter 3 and also on the use of the QSS method. As a DEVS model is executable on any 

embedded DEVS platform, for instance the CD++ engine (e-CD++) [8], the verified 

digital controller component can be deployed as an executable on the target system 

running e-CD++.  

To accomplish the above goal of the thesis, we extend the previous work of 

verification of DEVS models done in chapter  to include a special method for 

transforming continuous models expressed in QSS to TA. This enables the verification of 

hybrid DEVS models through model checking tools like UPPAAL. 

To show the main ideas for hybrid systems verification within DEVS & QSS, and 

potential problems and challenges that we need to solve, we present here a simple 

example of a simple continuous formula that is used for modeling many physical and 

natural systems. This is an exponential decay formula that describes an amount 

decreasing exponentially with regard to time. Some of the natural systems that follow this 

are [79]: 

 Radioactive decay, where a radioactive material undergoes a nuclear change, the 

number of remaining atoms, from an initial amount, follows the exponential decay 

formula. 

 The decrease of a temperature of a hot object cooling in a natural convective 

mode, such as a space-heating radiator.  
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 Atmospheric pressure, which decreases as the latitude increases above sea level. 

Some of these examples could be a part of a hybrid system composed of the physical 

environment and a digital controller, such as a thermostat-controlled heating of a room 

space. The temperature of the room radiator decreases exponentially with respect to time 

while the thermostat is in the off state. The exponential decay formula is modeled as 

follows, using an ODE: 

dx/dt = -x(t) (Eq. 5.1) 

 

Which has the analytical solution  x(t) = e-t  , with the initial condition x(0) =1 

Figure 33 shows a graph of the exact analytical solution of the exponential decay 

formula x(t) = 10 e-t  where  x(0) =10. 

 

Figure 33: Exact solution for the exponential decay formula. 

This simple ODE has an exact analytical solution, which is not the case for many other 

complex differential equations that exist in real-world applications. In those cases, the 

traditional technique is to use numerical methods to obtain an approximated solution. 
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This approximated solution can be made arbitrarily accurate with a small error difference 

from the expected exact solution. In most applications, this inaccuracy is acceptable as 

the measurements of any physical value are of limited precision. Further, the modelling 

process involves abstracting many irrelevant details from the real system, which adds to 

the inaccuracy of the final solution. For these inaccuracies, an approximated solution is 

acceptable as long as its error stays within the margin of these tolerated inaccuracies. 

Numerical methods for solving Differential Algebraic Equations DAE that describe a 

physical system can be represented in discrete event form using the QSS method. This 

happens to be a convenient form to model complex systems with the hierarchical nature 

of DEVS. It also allows the integration of the QSS components with other DEVS discrete 

event components to model any hybrid system.  

Model checking also needs a discrete finite representation of the system under 

verification, thus, QSS & DEVS give the right system model for model checking 

provided we solve some of the problems we face when we apply model checking on QSS 

components. Identification and solving these problems is the focus of this section of the 

thesis. To illustrate the issues with verifying DEVS models done with QSS, we would use 

the example of the decay formula shown above. The solution of the decay formula of 

(Eq. 5.1) is approximated with linear segments in QSS as shown in figure 45 on page 

130. Each linear segment starts from a quantization level Qk, and ends at the next 

quantization level Qk-1. The slope of a linear segment is calculated as per the system 

ODE, for (Eq. 5.1)          dq/dt = -q. From this slope, QSS calculates the time needed for 
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the quantized variable q to move from Qk to Qk-1 as  = dq/slope = dq/q. These 

calculations are part of the definition of the internal transition function int(s) in (Eq. 5.2). 

The system starts with an initial state x(0) = 1 which is modeled with the quantized state 

q = Q0 = 1. The quantum dq chosen in this example is 0.1, thus Qk – Qk-1 = 0.1, i.e. qk-1 = 

qk – 0.1, because the function slope in this example is negative. This solution of (Eq. 5.1) 

is defined in a discrete-event form by the following QSS DEVS model: 

AMD = <X, Y, S, int, ext , ta>             (Eq. 5.2) 

X = Ø 

S={s | s=(q,)} 

ta(s) = ta(q,) =  

int (s)  =int (q,) = (q-0.1, 0 .1/q) 

qq 

q: is a quantized variable related to x(t) system variable by a quantization function as 

shown in section 2.4.1. Figure 33 shows the exact analytical solution of the exponential 

decay formula  x(t) = 10 e-t, which has x(0) = 10. 

Figure 34 shows the quantized representation of the decay formula as a result of 

simulating this QSS model, with x(0) = 10. 
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Figure 34: Quantized representation of exponential decay. 

In the following section, we will look into the issues that we need to solve to enable 

hybrid DEVS verification. Please note that we do not try to propose an alternative 

method of solving continuous systems here. We only try to find suitable discrete 

representation that can be formally verified with the controller design. This discrete 

representation is obtained here using the QSS method. 

5.1.1 Transforming QSS DEVS models to TA 

To verify a general QSS system as defined in section 2.4.1 using timed automata, it 

would be necessary to represent it as an equivalent timed automata model while we 

preserve all the important properties that we may wish to verify, such as safety, 

reachability, and bounded liveness. To do so, we use an over-approximation model to 

contain all system behaviour defined in the QSS model. In order to do this, we need to 

solve the following: 

1) The QSS model uses variables of type Real, which theoretically imply an infinite 

state space, while only Integer variables are supported in TA. This is to guarantee the 
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finiteness of reachability state space, and hence the termination of TA reachability 

algorithm. Thus, we need an abstraction mechanism to reduce the infinite state-space 

of QSS variables to the bounded finite state-space of UPPAAL. However, this 

abstraction should preserve the critical properties in the hybrid system that we need to 

verify.  

2) The exact behavioural equivalency between a continuous system modeled in QSS and 

TA cannot be done with bisimulation, as the QSS state variables are Real numbers, 

while TA have only Integer variables to represent the model states. We need to find a 

simulation relation between the continuous system and the QSS/TA model that 

preserves the important safety requirements. 

3) A change of a variable representing a continuous system state is often described with 

arithmetic functions that return a Real number, and whose domain is also a Real 

number. These functions would need to be represented with approximated Integer 

arithmetic functions (for example, trigonometric, logarithmic or exponential 

functions). 

To solve the first challenge, we need to represent the infinite continuous state-space 

with a reduced finite state space. This is easy as practical considerations put a limit to the 

number of states a QSS system would have for its variables. For example, it is common 

to use some variable x to represent the value of a physical measure in a system. From the 

modelling process, it is possible to identify lower and upper bounds on the values of this 

variable in a given model. Further, any measured physical property would have a finite 
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precision according to the measurement method. This limited precision would lead to a 

measurement error |err| ≤ xi+1 - xi, i.e. the least possible observed difference between two 

successive values of variable x, is equal or greater than the measurement error. 

Therefore, these observations provide a finite state system where the bounds would 

constitute lower and upper saturation bounds Q0 and Qr, and the quantum ≥ |err|. 

Thus, we obtain the finite set Q of the quantization levels defined for a QSS model: 

Q = {Q0,Q1, ...,Qr}  a set of real numbers where Qk−1 < Qk with 1 ≤ k ≤ r, 

 Qk – Qk-1  ≥ |err|. In this case, the number of states of a QSS system would be at most 

r+1 states.  

 In order to meet the second requirement, we do not need total equivalence of 

behaviour between QSS model and TA model. To verify the QSS model behaviour, we 

need to include this behaviour within TA model, i.e. one way simulation relation (the TA 

model simulates the QSS model). This is obtained with an approximation that includes all 

QSS model behaviour and thus preserves the properties we wish to verify. This can be 

done with an over-approximation of the QSS model that contains all behaviours of the 

original QSS model plus some extra behaviour due to the over-approximation. One way 

to do this is to abstract each Real number with an integer interval, and this can be done to 

any degree of precision required. This produces an over-approximation that guarantees 

full inclusion of the QSS model behaviour. This, in turn, guarantees any reachability 

verification results on the over-approximation are true for the original QSS model.  
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An over-approximation preserves safety and bounded liveness properties as Berard et 

al. have shown in [80]. These properties are very important when verifying hybrid 

systems. The safety property says that there is (are) no unsafe (or bad) state(s) reachable 

from the system initial state(s). The bounded liveness property says that, whenever an 

event occurs, the system would always respond within a specific time bound t.  

 An example of how safety and bounded liveness properties are preserved, by over-

approximating the original model, is given in [80]. As these properties are the most 

important in an embedded control system, we claim that over-approximation would 

suffice for our purpose, and the main purpose of this stage of the research will be to 

verify such a claim. 

To illustrate the over-approximation, figure 35 shows an example of over-

approximation of Real numbers with an Integer interval.  In this figure, the “small” 

bubbles (states) represent the Real values of a system state variable that changes during 

system evolution. To approximate the system behaviour, all states where the state 

variable in the closed interval x=[1.0,2.0], could be represented by a single state, S, in 

which, the state variable value is over-approximated to this single state representing the 

values [1,2]. The state S thus contains all possible system dynamics for variable x in the 

interval [1.0,2.0]. Assume that the state where x=1.4 is a “bad” state, and we wish to 

check the safety of our system, expressed as a condition to never reach this state from the 

initial system state. Then, if the reachability analysis of the over-approximation shows 

that the state S is not reachable from any initial system state, then we can guarantee that 
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the bad state (which is contained in S) is also non-reachable in the original system, hence 

we prove our system safety. However, as indicated in [80], if the reachability analysis 

shows that we can reach the large state S, then we cannot conclude the safety of our 

system unless we refine the approximation to a smaller approximation and re-do the 

reachability analysis. This example shows how the safety property is preserved in an 

over-approximated system, i.e. whenever we verify an over-approximation for a safety 

property and the system proves to be safe, we conclude that the original system is also 

safe as explained in [80]. The same can be deduced about the bounded liveness property.   

X=1.1

X=1.2

X=1.3

X=1.4

X=1.5

X=1.6

X=1.7

X=1.8

X=1.9
X=2.1

X = [1,2]

X=0.1X=...

X=...

S

Unsafe 
state

 

Figure 35: Example of real numbers over-approximation with integer numbers. 

 

Now, we look into getting an equivalent TA model for the QSS model of the decay 

formula. To do so, we simulate the QSS behaviour with an equivalent TA model which 
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contains this behaviour. First, we look at the semantics of the QSS model of (Eq. 5.2) 

which represents a loop as follows: 

1. Initial values are assigned to q=1 and  = 0, resulting in initial state So=(1,0). 

2. After a time elapse of e = the output function is triggered to send the value of q 

to the outport, and then δint is triggered to calculate the next state s, which is composed of 

the new values of q and  :  s = (q-0.1, 0.1/q). 

3. Repeat step 2 in the loop until s = (0,10). 

To transform this DEVS model to a TA, we need to solve the following issues: 

1. The TA variables can only be of bounded integer type, in order to guarantee the 

finiteness of state space and hence the termination of the reachability algorithm. 

However, in QSS, state variables are real numbers and thus have infinite values. 

2. The time  of next quantum event (is approximated to an integer number. However, 

in doing so we need to preserve the original behaviour of the QSS model, and hence 

preserve the properties we need to formally verify. 

The first issue is handled by converting rational Real numbers to Integers by 

multiplying all the values by the least common multiple of all the denominators. For any 

irrational values, we can use the technique we introduced in section 4.5. For the second 

issue, we use abstraction by over-approximation [39]. With this technique, we 

approximate the real value of the event time ti with a bounded time interval such that ti 

[TL,TH], where TL =floor(ti) ,  TH = ceiling(ti). This guarantees that the resulting TA 

would include all possible event timings in that interval. 
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To obtain a TA that contains all the behaviour of the QSS model, we need a simulation 

relation with the QSS model (i.e., TA simulates QSS). To do so, each state in QSS would 

be simulated by a corresponding state in TA and each target state in QSS is simulated by 

a corresponding target state in TA. This is done in the TA model shown in figure 36.  

Inspecting the semantics of this TA model, we can see the following simulation of the 

QSS model after multiplication by a scale of 10 to remove fractional parts:  

1. The TA starts in the initial state S1, and moves to S2. On this initial transition, the 

total state variables are initialized as sigmaL=0, sigmaH=0, clock t = 0, and q=10.  

2. After the time elapse t where    ≤ t ≤    the transition S2S3 is executed, 

calculating new value of q=q-1. 

3. S3 is a committed state, causing the transition S3S2 to be taken immediately, 

calculating new values, on this transition, for sigmaL =  and sigmaH = . The 

total state at S2 is (q-1,   ≤ t ≤   ). 

4. Steps 2 and 3 are repeated until the total state = (q=1, sigmaL=sigmaH=10). 

To compare between QSS and TA semantics, we look at their states and transitions.  

From the above semantics of the QSS model, we notice that QSS has the following states 

and transitions: 

(q=q0, t < 1)  
 0:;1 tt  (q= q1, t < 2)  

 0:;2 tt  (q= q2, t < 3) 

 
 0:;3 tt 

…..  
 0:;10 tt  (q= q10, t < ∞) 
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From the semantics of TA model of figure 36, and after changing the model scale to 

eliminate fractions, this TA has the following states and transitions: 

(q=q0, t < 1)      
 0:;11 tt  (q= q1, t < 2)      

 0:;22 tt  (q= q2, 

t < 3)      
 0:;33 tt 

…..      
 0:;1010 tt  (q= q10, t < ∞) 

From this, we can see that, for each transition in the QSS model, every state in the 

QSS model is simulated by a state in the TA model. It results that the TA of figure 36 

simulates the above QSS model, and is an over-approximation as it contains all the 

transitions and the states of the QSS model.  

In implementing this TA model, the calculated value of the next event  is over-

approximated within an integer interval [ ,  ] with the following functions we 

defined in the UPPAAL model:  

roundUpDiv(x,y)  = x/y  

roundDownDiv(x,y)  = x/y 

 

Figure 36: TA model of exponential decay formula. 
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In this timed automaton, the state variable is represented with an integer variable q. 

This TA model produces the quantized output through the values of q that represent the 

state variable. The output of this model over-approximates what is seen in figure 34.      

5.1.2 Case Study of a Hybrid Elevator System 

To show how this integrates into a methodology for verification of hybrid DEVS 

models, we modified the example originally introduced in section 4.8 to contain a 

continuous model describing the dynamics of elevator braking. We also published a 

summary of this case study in [81].  

To extend the Elevator case study we introduced in section 4.8, we consider a 

continuous model of the elevator de-acceleration motion due to applying the brakes. This 

model can be described by a differential equation as: 

a
dt

dv
  

(Eq.5.3) 

Where v is the elevator speed, and a is a constant acceleration which is a negative 

value in case of braking or a positive value for moving out of rest. Figure 37 shows a 

negative constant acceleration representing braking action applied on the elevator. 



     

    121 

E levator B raking

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 5 10 15 20 25 30 35

T ime (sec )

De-a c c e lera tion 

(m/sec 2)

 

Figure 37: Elevator braking. De-acceleration: 0.5 m/s2. 

The speed of the elevator at any point in time t can then be obtained as: 

v = at + vi    (Eq.5.4) 

 

With vi the initial elevator speed before applying the brakes. figure 38 shows the 

change in elevator speed during braking. The elevator brakes are applied while its speed 

is 4 m/s, and the subsequent reduction of speed is shown until complete stop.  
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Figure 38: Elevator speed under braking. 

With this continuous model of the elevator motion, our overall elevator model becomes 

a hybrid between discrete and continuous components. To simulate and then verify this 
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hybrid model, we must obtain discrete representation of the elevator braking model. This 

can be done within DEVS formalism using the QSS method. A QSS model to represent 

the elevator speed under braking (Eq.5.4) can be described as follows: 

AMD = <X, Y, S, int, ext , ta> (Eq.5.5)  

X = Ø;             

S={s | s=(q,)};  

ta(s) = ta(q,) = int (s) =int (q,) = (q-0.5, 0.5/a) 

 qq 

 

q: is a quantized variable related to v(t) system variable by quantization function as 

shown in section 2.4.1. Figure 39 shows the quantized output of this QSS model. 

a: is the slope value as defined by (Eq.5.3).   

 

Figure 39: Quantized braking-elevator speed. 
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To enable the formal verification within UPPAAL to the combined hybrid elevator 

model, we transform the QSS model of (Eq.5.5) to an equivalent TA model as per the 

method shown above, resulting in the TA shown in figure 40. 

 

Figure 40: TA model of braking elevator motion. 

 

Sigma is calculated as per the definition of (Eq.5.5) within the int function. However, 

sigma is defined as a real value in the QSS model. Therefore, sigma value is over-

approximated with an integer interval   [sigmaL, sigmaH]. Thus, the TA model 

behavior includes all the trajectories (q,t) where q is the quantized state, and t  [sigmaL, 

sigmaH]. In addition, since TA deals with only integer type variables, we multiplied all 

values of the QSS model by a factor of 100 to convert all fractions to integers. This 

multiplication is done on all TA components in the elevator model to scale the time 

evenly for all the component models. We note here that this multiplication, though 

necessary to convert rational constants to integers, yields the total reachability graph size 

larger as number of nodes in reachability graph increases with the maximum constant 
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value in a TA model. This is noted in section 6.1.1 for future enhancements to this 

methodology. Another modification to the original elevator model was necessary to 

enable the elevator to communicate with the QSS model through the synchronization 

channel applyBrake, and for the elevator to move to the Stopped location only when the 

quantized speed value q reaches zero. The modified elevator model is shown in figure 41. 

 

Figure 41: Modified elevator TA model- scale of 1/100 second.. 

In this model, whenever the elevator receives the command from the controller to stop, 

it synchronizes with the braking motion model with sending applyBrake!. This would 

start the computation of the quantized speed output by the TA shown in figure 40. The 

elevator waits in state Braking for the quantized speed q value to reach zero. Once the 
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elevator speed reaches zero, the transition from Braking to Stopped is enabled and 

executed, and then, the elevator sends a synchronization signal on the channel stop! to the 

elevator-controller to let it know it has stopped. The rest of the model executes exactly as 

shown before in section 4.8. This model of the originally hybrid system allows the 

designer to verify the control system with different parameters of the elevator’s physical 

system, such as different braking values of de-accelerations, different elevator initial 

speeds, or other parameters in a more detailed QSS model. This is an important addition 

to the elevator system verification as relevant physical factors to the controller 

performance can be identified and formally verified during the design phase. 

In section 4.8, we showed how to verify a number of desired properties for the DEVS 

model (such as deadlock freedom, bounded response time, and safety properties) for the 

elevator coupled model. We used Computational Tree Logic (CTL) to construct queries 

with the requirements and submitted it to UPPAAL to get an answer and hence verify 

that requirement. Here we show how to check one of these required properties here with 

the hybrid system modeled in the previous section. We start with an elevator model as the 

one described in figure 41with its speed decrease as in figure 39. 

One such requirement is the freedom of deadlocks expressed in CTL as 

 A[] not deadlock.  

This means for all paths, there should be no deadlocks. 

After running the checker, it shows that this property is satisfied, i.e. there is no deadlock 

in the DEVS model: 
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(Academic) UPPAAL version 4.0.13 (rev. 4577), September 2010 -- server. 

A[] not deadlock 

Property is satisfied. 

 

In another example, a second elevator with braking de-acceleration equals (-0.12 m/s2) 

has its continuous and quantized speeds described by graphs shown in figure 42 and 

figure 43.  

 

Figure 42: Elevator speed, acceleration= - 0.12 m/sec2. 

 

Figure 43: Quantized speed, acceleration= - 0.12 m/s2. 
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To verify the elevator-controller with this second version, we changed the parameters 

of the elevator acceleration in its TA model and re-verified again. The results are shown 

as follows: 

A[] not deadlock 

Property is not satisfied. 

In this case, the time needed for the elevator to stop is approximately 33 seconds. This 

would contradict with the user requirements model shown in figure 29. In this model, the 

user expects the elevator to reach 3rd floor within 27 seconds at most, and after this time 

the requirement for the elevator controller to be ready to accept another as shown on the 

transition S5  S6. However, the slow-braking elevator would not be able to fulfill the 

second request in time, hence we have a time lock [77] and the model cannot progress 

beyond S5. 

We add a note here about deadlock verification. Deadlock freedom is an example of 

liveness property. A system deadlock means the non-existence of enabled transitions in 

the model, i.e. lack of system behavior at this point in time. When we over-approximate, 

we add some extra behaviour to the model. Thus verification of deadlock freedom on the 

over-approximated model does not guarantee that the original model is also deadlock-

free. This is due to the uncertainty if the deadlock freedom is a result of the original 

system behaviour, or the extra behaviour added in the over-approximation. However, if 

the over-approximated model shows a deadlock, this guarantees the original system has 

also a deadlock as the original system has less behaviour. This result is because liveness 

property in general cannot be expressed as a safety property as shown in [80]. This 
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limitation does not affect our methodology as the bounded liveness property is of the 

most importance to a real-time system. Knowing that a response would come eventually 

in future (as deadlock freedom, and general liveness properties imply) is not enough for 

real-time system correctness, we need to guarantee a bounded-delay for a response, for 

the system to be useful.  Bounded liveness property can be expressed as a safety property, 

and hence preserved in the over-approximation [80].  

5.1.3 Verifying general QSS 

To verify a general QSS system as defined above in section 2.4.1 using timed 

automata, it is necessary to preserve all the important properties that we may wish to 

verify (such as safety, reachability, and bounded liveness). To do so, we use an over-

approximation model to contain all system behaviours defined in the QSS model as we 

shown before. In doing so, we need to convert all real numbers with fractional parts to 

integers. This is typically done by changing the model scale by multiplying all constants 

by the least common denominator. However, this can only be done at the model design 

time for the quantization levels and the quantum values, as we know the set of 

quantization levels and the value of the quantum before model execution. There are other 

computed value of the timed automata model such as the state lifetime, and the 

intermediate values of x and f(x). These values are computed during the model’s 

execution, thus we have no idea about these values beforehand, and so we cannot 

determine a common denominator for all the possible values computed during runtime. 

To overcome this, we need to specify a timed automata model that allows an event to 
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occur at any possible time between  and   , or in case of another variable x, the true 

variable value would be in a closed interval [x, x]. This effectively gives us an over-

approximation model to the QSS that includes all possible behaviours of the original QSS 

model.  

We show in more detail this over-approximation with the exponential decay formula 

we introduced in section 2.4.1. This formula has the analytical solution x(t) = e-t, with the 

initial condition x(0) =1. Figure 44 shows a graph of the exact analytical solution of the 

exponential decay formula x(t) = 10 e-t where x(0) =10.  

 

Figure 44: Exact solution for exponential decay formula. 

QSS approximates the continuous system with linear segments, and generates events 

whenever the approximated solution crosses a quantization level. Figure 45 shows the 

QSS approximate solution versus the exact solution of the decay formula. 
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Figure 45: QSS linear approximation 

Figure 46 shows events generated by QSS based on the approximate solution. These 

events represent the system state changes at points in time. In that figure, continuous line 

curve represents the exact solution; stepped (marked with x) graph represents QSS 

approximation where sigma is calculated as Real number. The stepped graph, marked 

with F, and the one marked with C, represents the over-approximation of QSS graph by 

 and    respectively. The time scale has been rescaled by multiplying by 10 to show 

details. This figure shows that the QSS behaviour, defined as pairs (eventi, timei), is 

contained within the over-approximated model. 



     

    131 

 

Figure 46: Over-approximation of QSS trace. 

To show the effect of the over-approximation for preserving the safety property, we 

assume that we want to verify the QSS system in regard to some safety conditions for its 

state variable. These conditions are that the value of the system state variable x would not 

fall into an unsafe zone (such as zone1 and zone2 as shown in figure 47). From the 

diagram, we see that if the over-approximation is safe concerning zone1, the actual QSS 

trajectory is guaranteed to be safe as well. The over-approximation however, can show 

the system is not safe in regard to zone2 as the state trajectory enters zone2 at (x=3, 17 ≤ t 

≤ 18). In this case, we can see that the actual QSS system is safe as the actual QSS 

trajectory does not intersect with zone2. This is a typical spurious violation of safety due 

to the added behaviour with over-approximation; hence over-approximation provides a 

more conservative model for safety verification.  
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We note here a limitation of the QSS method to model the actual system trajectory. As 

the QSS method in this example uses linear approximation, it is known to have an 

approximation error when simulating continuous systems with nonlinear dynamics as 

shown in [51]. This approximation error is inversely proportional to the quantum value 

dQ. However, by reducing dQ, the number of iterations increases. Some extensions for 

the QSS method are using a second-order equation to approximate continuous systems 

[60], which results in the ability to reduce dQ without much increase in the number of 

iterations. This limitation however, is part of the QSS method, and we do not try to 

remove this limitation in this research. We just verify the QSS model that the modeller 

chooses to simulate, and verifies. In doing so, the modeller is aware with the small 

approximation due to QSS method, and it is acceptable for his/her purpose. In future 

work, addressing the gap between QSS trace, and the actual system trajectories and its 

effect to formal verification can be done. We expand on this point in the future work 

section in section 6.1.1. 

 

Figure 47: Safety zones with QSS over-approximation. 
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To extend these ideas to a general QSS system, a major obstacle to model general QSS 

models with TA is that QSS uses variables of type Real, while TA has only Integer type 

variables. This necessitates an approximation of all Real-valued variables in QSS to an 

equivalent Integer values. When faced with obtaining an Integer approximation to a Real 

value, we need to round the Real value to nearest Integer. However, in doing so, we lose 

the actual value as it is in the QSS model, and this may render TA verification results not 

applicable to the original QSS system. 

To include the actual value of the QSS variables in our approximation, we 

approximate any QSS Real-value with a closed interval between two Integers [L,U], 

where L is the mathematical floor function of the Real-value, and U is the mathematical 

ceiling. This would constitute an over-approximation that contains the true trajectory 

produced by the QSS. This over-approximation, when transformed to a TA model, would 

contain all possible behaviours in the QSS model. Thus it would simulate the original 

QSS system. In the resulting over-approximation QSS model, any calculations would use 

interval arithmetic as introduced in section 2.5. 

To show this, we construct a QSS model where only integers and integer intervals are 

used. Thus, the QSS system of (Eq. 2.6) on page 37 may be written as: 

M1OA = (X, Y,  , δint, δext, λ, ta), where 

X = 2 × {inport} 

Y =  × {outport} 

(Eq.5.6) 
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S = 4× Z× Z2 +
0 ∞ 

δint(s) = δint([xL, xU],  [dxL , dxU],  k, [σL, σH] ) = 

       (Qk+1, [dxL , dxU] , k + sgn(dxL), [ σ1L ,σ1H]) 

δext(s, e, xu) = δext(x, dx, k, σ, e, xv, port) =  

               ([xL, xU], [xvL, xvL ], k, [ σ2L ,σ2H]) 

λ(s) = λ(x, dx, k, σ) = (Qk+sgn(dx), outport) 

ta(s) = ta(x, dx, k, σ) = [σL, σH] 

xL = x + e · dxL 

xU = x + e · dxU 

σ1L  = 
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(Eq. 5.7) 
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 (Eq. 5.8) 
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and from (Eq. 2.4) on page 34, we calculate current 

function slope as: 

  

dxL = f[q(t), u(t)] 

dxU = f[q(t), u(t)] 

xvL =  f[xL(t), u(t)] 

xvU = f[xU(t), u(t)] 

 (Eq. 5.9) 

 

   

In the model of (Eq.5.6),(Eq. 5.7),(Eq. 5.8),(Eq. 5.9) we replaced every computed 

Real-valued quantity with a bounded Integer interval. Formally, for any calculated Real-

value r, we replace it with a closed interval [r , r]. This makes the model of (Eq.5.6),-

(Eq. 5.9) an over-approximation to the QSS model of (Eq. 2.6) on page 37. Thus, it 

would contain all behaviours of (Eq. 2.6) model, along with some added behaviour due to 

the over-approximation. Preservation of behaviour into the over-approximation is vital to 



     

    136 

verification. As this guarantees that any safety, and bounded liveness property that is 

verified in (Eq.5.6)-(Eq. 5.9) model, would also be true for (Eq. 2.6) model.  

 

We also note here that in replacing Real-valued quantities with integer intervals, we 

did not need to do this for quantization levels Q ={Q0,Q1,….Qn}, quantum value dQ, or 

hysteresis value , assuming all these values are rational numbers. These values are 

parameters of any QSS model and are known before runtime, thus these values can be 

represented as integers by changing the model scale by multiplying all these numbers by 

least-common-multiple denominator as we described in chapter 3.  

Another obstacle in representing general QSS models with TA is the nature of the 

function f of (Eq. 2.4) on page 34. In UPPAAL, users can define functions with a syntax 

close to that of C language. However, the available operators are limited to the primary 

mathematical operators, as shown in table 3. Furthermore, operands and expression 

results are all integers. This puts a limit on the functions that can be expressed in 

UPPAAL TA. Similar restrictions on the system dynamics also exist with other 

formalisms for hybrid systems verification such as Linear Hybrid Automata [82], where 

derivatives are limited by linear constraints. To model QSS systems whose dynamics are 

described by complex function, the modeller would need to approximate the complex 

function with a polynomial formula that uses only preliminary operators of UPPAAL. 

This approximation may use one of the series expansion methods such as the Maclaurin 

Series, and can be done up to the desired precision. In this case, the system function 
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would have to be differentiable and the types of functions we can use are limited by 

Maclaurin series limitations. However, it should be noted that the more precision we get, 

the higher values are obtained for constants in the resulting TA model and hence more 

resources (memory and time) would be needed to verify the model as we discuss in 

section 6.1.1. This approximation, however, is out of the scope of this thesis.  

Table 3: UPPAAL arithmetic operators 

++  Increment (can be used as both prefix and postfix operator)  

--  Decrement (can be used as both prefix and --> --postfix operator)  

-  Integer subtraction (can also be used as unary negation)  

+  Integer addition  

*  Integer multiplication  

/  Integer division  

%  Modulo  

<<  Left bitshift  

>>  Right bitshift  

<?  Minimum  

>?  Maximum  

 

The integrator automaton representing the QSS model of (Eq.5.6) is shown in figure 

48. The structure of this automaton would be fixed for any QSS system, and thus can be 

considered as a template representing the DEVS model of (Eq.5.6). This template has the 

following parameters that are part of the QSS model definition: 
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 A set of defined quantization levels Q ={Q0,Q1,….Qr}, where Q0 is the initial 

level, Qr is the final level. 

 The quantum dQ = Qk+1 - Qk , such that     0 ≤ k < r 

 Hysteresis value  

 System defined functions:   f [x(t), u(t)], x(t), and u(t). 

 

Figure 48: TA model of a QSS general Integrator 

This automaton starts in S1, and on the transition from S1 to S2, it initializes the 

variables sigmaL, sigmaH, q, and clock t. The internal transition function δint(s) of 

(Eq.5.6) is simulated with transitions S2  S3, and S3  S2. At S2, the automaton waits 

for a time t, where   σ1L  t  σ1H , then transits to S3. On this transition, value of q is 

updated as Qk+sgn(dx)  = q + (dQ * sgn(dx)), which is equivalent to the expression (x + σ · 

dx) of (Eq. 2.6) on page 37. Then, on transition S3  S2, an updated values of dxL, dxU 

are calculated according to (Eq. 5.9), then values [σ1L ,σ1H]  are calculated according to 
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(Eq. 5.7). Clock t is also reset to zero on the transition S3  S2 before waiting in S2 for 

the next event. The output function λ(s) is implicit in the TA model, as the value of 

shared variable q can be read by other models coupled with this TA model. The 

definitions of UPPAAL functions of these calculations are shown in table 4. 

 

To simulate the external transition function δext(s, e, xu) of (Eq.5.6), we use the 

transitions S2  S4  S2. Transition S2  S4 would be enabled only if the automaton 

receives a synchronization input on channel a. This is typically another automaton 

generating the function u(t) as shown in figure 49, and would be described later. When 

this synchronization happens, the automaton moves to the committed state S4, and then, 

without delay, it executes the transition S4  S2. On this latter transition, the new values 

of [xL, xU] are calculated based on the shared variables SigmaL, SigmaH which are 

passed from the automaton of figure 49. New values of [xvL, xvL ] are also calculated 

which represents the new slope value. Finally, new values for [σ2L,σ2H] are calculated. 

The UPPAAL functions that we defined for these calculations are shown in table 5. 

. 
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Figure 49: TA Model of a QSS Input function generation 
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Table 4: User defined functions for the UPPAAL TA model of figure 48 

int sgn(int dx){ 

if (dx > 0) 

  return 1; 

else 

  return -1; 

} 

void calc_dx(){   

//calculates //the slope 

from system //defined 

function 

 dxL = f(xL, v); 

 dxU = f(xU, v); 

} 

int f(int x,int v){    

//calculates the slope from 

//system defined function 

 // Replace f with system 

//function here... 

int f = x + v; 

return f; 

} 

int calcSigma1L(){ 

// This function is to calculate the new value of Q based on its curent value and the 

quantum dQ //in internal transition 

int sigmaL; 

if (dxU > 0) 

  sigmaL = roundDownDiv (dQ, dxU); 

else if (dxU < 0) 

      sigmaL = roundDownDiv (dQ - epsilon, -dxU); 

     else 

      sigmaL = 32767;      // this represents infinity in UPPAAL int type. 

return  sigmaL; 

} 

int calcSigma1H(){ 

// This function is to calculate the new value of Q based on its current value and the 

quantum dQ //in internal transition 

if (dxL > 0) 

  sigmaH = roundUpDiv (dQ, dxL); 

else if (dxL < 0) 

      sigmaL = roundUpDiv (dQ - epsilon, -dxL); 

     else 

      sigmaL = 32767;      // this represents infinity in UPPAAL int type. 

return  sigmaH; 

} 
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Table 5: User defined functions for the UPPAAL TA model of figure 49 

void calc_x(int SigmaL, int SigmaH ){ 

// calculates current value of x from elapsed 

//time wich is in the interval[SigmaL,SigmaH] 

//coming from external input, and the slope dx 

 xL += SigmaL * dxL; //Lower integer bound of       

//x variable 

 xU += SigmaH * dxU; //Upper integer bound of       

//x variable 

 

} 

void calc_dx(){   

 // calculates the slope from system 

//defined function 

 dxL = f(xL, v); 

 dxU = f(xU, v); 

} 

int calcSigma2L(){      

// This function is to calculate the lower bound of sigma in external transition 

int sigmaL, xvL; 

xvL = calc_xv(xL); 

if (dxL > 0)    

  sigmaL = roundDownDiv ((q + dQ) - xL, xvL); 

else if (dxL < 0) 

      sigmaL = roundDownDiv ( xL - (q - epsilon) , -xvL);   

     else 

      sigmaL = 32767;      // this represents infinity in UPPAAL int type. 

return  sigmaL; 

} 

int calcSigma2H(){      

  // This function is to calculate the upper bound of sigma in external transition 

int sigmaH, xvU; 

xvU = calc_xv(xU); 

 

if (dxL > 0) 

  sigmaL = roundUpDiv ((q + dQ) - xL, xvU); 

else if (dxU < 0) 

      sigmaH = roundUpDiv ( xU - (q - epsilon) , -xvU); 
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     else 

      sigmaH = 32767;      // this represents infinity in UPPAAL int type. 

return  sigmaH; 

} 

 

For a general QSS system where u(t) ≠ φ, the QSS model would have an external 

transition function to process the input u(t). u(t) is a constant input step function as 

defined in QSS [51]. To simulate a system described with ODE’s as (Eq. 2.4) on page 34, 

the input u(t) needs to be generated by a DEVS QSS model. One example is given in [60] 

for a sinusoidal shape input signal. This DEVS QSS model is similar to the model 

defined in (Eq.5.5), as it does not have external inputs, and it generates a sequence of 

quantized events to represent the step function u(t). Such a system can be described by an 

over-approximated QSS model MuOA where we use closed integer intervals instead of 

Real numbers, for the same reason we did with the integrator QSS model above. The 

over-approximated model of the input function is shown in (Eq. 5.10) -    (Eq. 5.12). 

MuOA = (X, Y, S, δint, δext, λ, ta), where 

X = φ 

Y =  × {outport} 

S = 4× Z× Z2 +0 ∞ 

δint(s) = δint([uL, uU],  [duL , duU],  k, [σL, σH] ) =  

                                    (Qk+1, [duL , duU] , k + sgn(duL), [ σ1L ,σ1H]) 

(Eq. 5.10) 
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δext(s, e, xu) = φ 

λ(s) = λ(x, du, k, σ) = (Qk+sgn(du), outport) 

ta(s) = ta(x, du, k, σ) = [σL, σH] 

σ1L  = 
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and current function slope as: 

duL = u(t) 

duU = u(t) 

   (Eq. 5.12) 

 

 

 

In this QSS model, system state is defined with a tuple (value of variable u, slope of 

state variable dv, current quantization level index k, and state lifetime σ). However, as we 

need to use only Integers to represent these quantities, we replaced each one with a closed 



     

    145 

integer interval. The integer interval is chosen to include inside it the quantity we are 

approximating. We do this by choosing the lower bound of the interval with the Floor 

function of the quantity, and the upper bound to be the Ceiling function. Thus the 

corresponding intervals to describe the QSS state would be ([uL, uU],  [duL , duU],  k, [σL, 

σH]). As this model has no external input, then we know, from the semantics of QSS 

method, that the state variable u would always take a value from the set Q of the 

quantization levels. Thus the term [uL, uU], of the state, would be the current quantization 

level Qk+1. Calculation of the state lifetime σ, is done with arithmetic intervals in                      

(Eq. 5.11) as the slope of the function is expressed as an interval, which in turn is 

calculated in    (Eq. 5.12). 

We follow the same steps we did for the QSS model of the integrator above to 

simulate this QSS model with timed automata, resulting in the TA model shown in figure 

49. The transition L1 L2 initializes clock z, the lower and upper time constraints [σ1L 

,σ1H], the quantized output variable v , and calculates the initial slope from the function 

definition of u(t) by invoking user defined function calc_dV(v). The slope is calculated as 

a closed integer interval [dvL,dvU] to represent the over-approximation of slope value, as 

defined in    (Eq. 5.12). 

δint(s) is simulated by transitions L2L3L2. On these two transitions, new value of v 

is calculated, the function calc_dV(v) calculates the values of u(t), then the new values of 

next event timing is calculated [ σ1L ,σ1H]. We note here that to calculate u(t) we need the 
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current value of time t. At any time during the model execution, the total elapsed time t 

after j number of internal transitions is given by: 





10 ji

ijt   

And as we have an estimate of   in the interval [σ1L ,σ1H], we get: 





10 ji

iLLjt     , 



10 ji

iUUj
t   

This gives an estimate of time at current iteration j as shown on transition L2L3 with 

the integer interval [tL,tU]. 

 

On the transition from L3 to L2, after the automaton calculates the next values of shared 

variables  igmaL and  igmaH, it synchronizes on channel “a” to the integrator 

automaton shown in figure 48 , so the latter can read the values of v, SigmaL, and 

SigmaH which are used in the external transition definition to recalculate a new function 

slope xv as per the QSS model of (Eq.5.6). 

void calc_dV(int v){ 

// Calculates the function u(t) which is the slope of the 

curve 

// user define function u(t) here, for example u(t) = 1 

  dvU = 1; 

  dvL = 1; 

} 

Figure 50: Definition template of u(t) in UPPAAL. 
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5.1.4 Advantages of using QSS/DEVS to verify Hybrid Models 

Enabling approximation to system dynamics in timed automata models using QSS opens 

the door to more complex verification queries and better controller designs. For example, 

the following research directions can be built on results of hybrid systems verification 

using QSS, as we introduced earlier in this chapter: 

 System dynamics are presented in a fine-grain in the TA model. This would 

enable verification of more advanced types of controllers than an On-Off 

controller. For example, advanced control algorithms could use the information 

about the state variable change with respect to time. 

 Optimization controller designs could also be verified in UPPAAL based on some 

optimization constraints on the values of state variables. 

 TA controller synthesis techniques could use the fine-grained information of 

system dynamics to synthesis advanced controllers based on QSS environment 

models. 
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Chapter 6: Conclusion & Future Research 

In this thesis, we have presented a methodology for the verification of different DEVS 

models. This methodology covers different components, including both deterministic 

classic DEVS and continuous components, which were modeled as DEVS using the QSS 

method (the QSS method was selected as the way to discretize the continuous behaviour 

using DEVS; however, other current or future methods within DEVS could be used in a 

similar fashion). 

The contributions of this work include a verification methodology for deterministic 

classic DEVS. Although, as identified in the State of the Art section, other groups have 

used TA to verify DEVS in parallel with our research, the work introduced in this 

research is different. The main contribution is the provision of a complete method that 

deals with the issues that prevent a full verification of DEVS models as shown in section 

4.1. It also provides a formal methodology to convert DEVS models into behaviourally 

equivalent TA models. Finally, the methodology provides an estimation method for any 

errors that could have occurred due to the conversion and the approximation process. 

Hybrid DEVS verification presented in this thesis is also an original result. These 

contributions resulted in numerous publications, listed in section 3.1.  
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6.1.1 Possible Future Research 

This dissertation lays the groundwork for the formal verification of DEVS models 

based on their transformation into TA. Based on this basic ability to verify DEVS 

models, further enhancements to the methodology are possible. Such enhancements 

would increase the model checking efficiency by decreasing the total state-space 

traversed during the model checking analysis. Such increase in efficiency would translate 

into a practical ability to verify larger DEVS models than what is currently possible, thus 

making formal DEVS verification possible for industrial-size models. 

These enhancements are based on exploiting some properties that are specific to the 

TA models resulting from the transformation of DEVS models. Such properties are not 

valid in general in TA. One of these properties is the nature of any embedded DEVS 

execution engine such as e-CD++. These engines usually run on a single processor 

machine and thus use a single physical clock to measure the elapsed time for all atomic 

DEVS components executing on this platform. Another observed property of many 

practical DEVS models is the re-use of the same atomic or coupled component many 

times in a complex DEVS model. Thus, the use of symmetry reduction techniques would 

reduce the number of distinct components to be verified. We expand on these two main 

possible future directions below:   

 Reducing state-space through reducing model complexity. Model checking 

timed automata models depends on building a finite reachability graph called 

Region Graph. Answering queries about system properties is done through 
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traversing this graph and validating the desired property at each node. Thus 

the complexity of the reachability algorithm depends on the size of the region 

graph. Aceto and Laroussinie [83] showed that this size is in the order of 

O(|C|! + M|C|), where |C| is the total number of clocks in both the TA model 

and the query, and M is the maximum constant appearing in the TA model or 

the query. Hence a great reduction in region graph size can be achieved by 

reducing the number of clocks in a TA model. This may be done in several 

ways as follows: 

o Checking safety and reachability properties of a DEVS model on an 

abstraction of untimed finite automata. This untimed finite automata 

model would be obtained by removing all the timing information from 

the DEVS model. This untimed version would constitute a rough 

abstraction of the DEVS model that contains all behaviors of the 

original DEVS model, plus some extra behavior due to removing the 

restrictions of timings. However, checking untimed model would be 

much more efficient than the timed model. This approach does not 

work for checking bounded-liveness properties on DEVS models. If 

verifying these properties is required, then next optimization would 

help. 

o In our methodology, as well as in all others as introduced in literature, 

each atomic DEVS model is transformed to a TA model with a clock 
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that measures the model elapsed time. One-clock automata can use 

efficient model-checking algorithms, as shown in [84]. However, any 

coupled DEVS model would be composed of many atomic models, 

each with its own clock. Therefore, the resulting equivalent composed 

TA for the coupled model would contain more than one clock, and 

thus cannot be considered a one-clock TA model. On the other hand, 

in most embedded simulators and runtimes, the coupled DEVS model 

would execute on a single processor using a single global clock. This 

assumption can be used to obtain an equivalent TA model with only 

one global clock for the complete coupled model. This would enable 

the efficient verification of such TA models, and thus scale up the size 

and number of DEVS components that can practically been verified. If 

the assumption of single processor cannot be guaranteed, as in the case 

in clustered systems for example, we would need a single clock for 

each component, and this optimization technique would not apply. 

 Symmetry in DEVS coupled models could be used to reduce state-space. As 

any typical system is normally composed of many components, it is common 

to find the same type of component replicated in many places in the system. A 

DEVS model of such system would contain replicated components. An 

intelligent conversion method from DEVS to TA could identify identical 
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DEVS components, and flag them for symmetrical analysis in the resulting 

TA model, thus greatly reducing state-space during reachability analysis.   

Another possible future research is related to the verification of continuous systems 

modeled with the QSS method. As described in section 5.1.3, the QSS method 

approximates the actual system trajectory. This approximation results in an error |E| 

which is the difference between the true system trajectory and the QSS approximated 

trajectory as can be seen in Figure 46. We can find a bound on this error as per [51] 

that depends on the quantization step dQ. For formal verification of hybrid system, it 

is desirable to verify the true system trajectory against safety requirements, and not 

only the approximation. To extend our verification methodology to do this, we can 

increase QSS intervals outwards with the estimated approximation error |E|. This 

would guarantee the true system trajectory is covered inside the trajectory being 

verified. Future research would look into formal models for this enhancement, effect 

of this on the verification complexity and the TA implementation. In case of highly 

non-linear functions, the error |E| can be large. In this case, another extension could 

be using QSS2 method in which the system trajectory is approximated with second 

order segments as shown in [51]. 
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